Тема . САММАТ (Самарская математическая олимпиада)
Теория чисел на САММАТе
Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела саммат (самарская математическая олимпиада)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#80195

Число abccba  состоит из попарно не совпадающих, отличных от нуля цифр a,b,c  и делится на 231.  Сколько существует таких чисел?

Подсказки к задаче

Подсказка 1

Логично, что рассматривать делимость на число 231 будет неразумно, поскольку оно слишком большое. Давайте разложим 231 на множители и рассмотрим делимость для них.

Подсказка 2

231 = 3 * 7 * 11. Обратите внимание, что для делимости на 11 нам подойдут любые a, b, c, так как a – b + c – c + b – a = 0. Но для делимости на 7 нам необходимо, чтобы число abc – cba делилось на 7. Как можно переписать это условие?

Подсказка 3

Распишем по разрядам числа abc и cba. abc = a*10² + b*10 + c и bca = с*10² + b*10 + a. Разность таких записей должна будет делиться на 7. Какие тогда мы получаем ограничения на a, b, c?

Подсказка 4

Из разности abc – cba следует, что |a – c| должно делиться на 7, а b – любое. Осталось только рассмотреть подходящие случаи a и c, и такие b для них, чтобы число делилось на 3.

Показать ответ и решение

Так как число должно делиться на 231= 3⋅7⋅11,  то оно должно делиться на 3,7  и 11.

a− b+c− c+ b− a =0

делится на 11  при любом выборе a,b,c,  поэтому число abccba-  делится на 11.

По признаку делимости на 7  разность |abc− cba| должна делиться на 7.

 --- ---  ||   2             2         || ||      2       ||
|abc− cba|= a ⋅10 + b⋅10 +c− c⋅10 − b⋅10− a = (a − c)10 − (a− c) =|a− c|⋅99

т.е. |a− c| должно делиться на 7.

Это возможно лишь, если (a= 9,c =2),(a= 8,c= 1),(a =1,c= 8),(a= 2,c= 9),  при произвольном b.  Осталось выяснить, сколько возможных значений b  приходится на каждую из перечисленных пар.

Для нахождения достаточно выяснить делимость на 3  числа abc.

1) a= 9,c= 2⇒ 9+ b+ 2= 11 +b.  Делимость на 3 числа 9b2-  возможна в трех случаях: b1 =1;b2 = 4;b3 = 7;

2) a= 8,c= 1⇒ 8+ b+ 1= 9+b.  Делимость на 3 числа 8b1  возможна в трех случаях: b = 3;b = 6;b = 9;(b⁄= 0).
 1    2    3

Остальные случаи симметричны рассмотренным. Таким образом, на каждую из найденных пар a  и c  приходится по 3 возможных значения b.

Ответ: 12

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное обучение
в Школково

Для детей ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Брянской областей, а также школьникам, находящимся в пунктах временного размещения Крыма обучение на платформе бесплатное.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ или олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!