Тема ЮМШ (олимпиада Юношеской Математической Школы)
ЮМШ (олимпиада Юношеской Математической Школы)
Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Разделы подтемы ЮМШ (олимпиада Юношеской Математической Школы)
Подтемы раздела юмш (олимпиада юношеской математической школы)
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#83389

Будем называть треугольник DEF  вписанным в треугольник ABC  , если точки D  , E  , F  находятся на сторонах BC  , AC  , AB  соответственно.

1. Докажите, что если отрезок EF  параллелен отрезку BC  , то описанные окружности треугольников AEF  и ABD  пересекаются на прямой DE  .

2. Оказалось, что CE = DE  , BF =DF  . Докажите, что точка, симметричная D  относительно EF  , лежит на пересечении описанных окружностей треугольников ABC  и AEF  .

3. Пусть ∠BAC  =∠DEF  = ∠DFE  . Средняя линия треугольника DEF  , параллельная EF  , пересекает AB  и AC  в точках X  и     Y  соответственно. Докажите, что точка A  , D  , X  , Y  лежат на одной окружности.

4. В треугольник DEF  вписан треугольник XY Z  , гомотетичный треугольнику ABC  . Докажите, что описанная окружность треугольника DEF  касается описанной окружности ABC  тогда и только тогда, когда касается описанной окружности XY Z  .

Источники: ЮМШ - 2024, сюжет 3 (см. yumsh.ru)

Показать ответ и решение

1. Пусть G  — вторая точка пересечения описанных окружностей AEF  и ABD  . Поскольку четырехугольник AFEG  описанный, то ∠AF E =  = 180∘− ∠AGE  . Четырехугольник ABDE  также описанный, значит ∠ABD = 180∘− ∠AGD  .

PIC

Поскольку EF ∥BC  , то ∠AF E = ∠ABD  .

Получаем, что ∠AGE = ∠AGD  . Тогда G  , E  , D  лежат на одной прямой.

2. Поскольку треугольники BED  и DF C  равнобедренные, то ∠EBD = ∠EDB  и ∠F CD =∠F DC  . Тогда ∠EDF  =180∘− ∠BDE − ∠FDC = 180∘− ∠B − ∠C =  =∠BAC  . Также из определения D′ (точка, симметричная D  относительно EF  ) следует, что ∠ED ′F =  = ∠EDF  =∠BAC  . Получается, что D′ лежит на описанной окружности AEF  .

PIC

Из определения  ′
D         ′
ED = ED  =EB  и  ′
D F =FD = FC  . Тогда      ′      ′
∠EBD  =∠AED  ∕2=         ′        ′
= ∠AFD ∕2= ∠ACD . Получаем, что    ′
  D лежит и на описанной окружности ABC  .

3. Обозначим за S  и T  середины DF  и DE  соответственно. Т.к. ∠SFE = ∠FAE = ∠FET  , то SF  и TE  — касательные к окружности, описанной около AF E  .

PIC

Рассмотрим пару окружностей: описанная окружность треугольника AFE  и окружность нулевого радиуса с центром в точке D  . Рассмотрим степени точек S  и T  относительно данных окружностей:

1) pow(AFE)(S)= SF2 =SD2 = powD (S)

2) pow(AFE)(T) =TE2 = TD2 = powD(T)

Получаем, что ST  — радикальная ось наших 2 окружностей. Тогда на этой же радикальной оси лежат X  и Y  . Тогда XA ⋅XF = XD2  и YA ⋅Y E = YD2  ⇒ XD  — касательная к описанной окружности AF D  , и YD  — касательная к описанной окружности AFD  . Тогда ∠XAD = ∠XDF  , ∠Y AD =∠Y DE  ⇒ ∠XDF + ∠YDE = ∠BAC  ⇒ ∠XDY  +∠XAY  = ∠XAY + ∠XAY + 180∘− ∠DF E− ∠DEF = 180∘ ⇒ XAY D  — вписанный.

4. Окружность (DEF )  повторно пересекает стороны BC  , AC  , AB  в точках  ′
D ,  ′
E ,   ′
F соответственно. Окружность (XY Z)  повторно пересекает стороны EF  , DF  , DE  в точках   ′
X ,  ′
Y ,  ′
Z соответственно.

Окружности     ′ ′
(EX Z )  и    ′ ′
(F X Y)  повторно пересекаются в точке M  . Заметим, что

∠Y′MZ ′ = ∠DEF + ∠DFE = π− ∠EDF,

поэтому M  лежит на окружности (DY ′Z′)  . Также

             ′        ′     ′ ′     ′ ′
∠EMF  = ∠FMX  + ∠EMX  = ∠F YX  +∠EZ X  =∠F XY + ∠EXZ = π− ∠A,

поэтому M  лежит на окружности (AEF )  . Аналогично M  лежит на окружностях (BFD)  , (CED )  .

Пусть Φ  — инверсия с центром в точке M  и произвольным радиусом. Тогда

pict

Также

     ′               ′     ′ ′                    ′ ′
∠ Φ(X )Φ(E)Φ(F )=∠F MX  = ∠FY X = ∠FXY = ∠AF E = ∠AE F .

Аналогично ∠Φ(X′)Φ (F)Φ(E)= ∠AF′E′ . Следовательно, треугольники AE ′F ′ и Φ(X ′)Φ(E )Φ (F)  подобны. Проделывая аналогичные рассуждения для двух других сторон мы получаем

          ′ ′′       ′   ′   ′
△ABC ∪ △D E F ∼ △Φ (X )Φ(Y)Φ(Z )∪△Φ (D )Φ(E)Φ(F).

Следовательно, угол между окружностями Φ((X′Y′Z′))  и Φ((DEF ))  равен углу между окружностями (ABC )  и (DEF )  по подобию, с другой стороны, равен углу между окружностями (X ′Y ′Z′)  и (DEF )  , поскольку инверсия сохраняет углы.

Ответ:

Ошибка.
Попробуйте повторить позже

Задача 2#83388

Дан граф G =(V,E)  на n  вершинах: сопоставим каждой вершине v  переменную x
 v  . Пусть T  — множество остовных деревьев графа G  (то есть поддеревьев, содержащих все вершины). Рассмотрим остовный многочлен от n  переменных x1,...,xn

                ∑  ∏  deg v−1
PG(x1,x2,...,xn)=       xv  S  .
               S∈Tv∈V

Назовем связный граф хорошим, если PG (x1,...,xn)  раскладывается на линейные множители (в частности, если PG  — тождественный ноль), иначе плохим.

1. Найдите PK4(1,2,3,4)  , где K4  — полный граф на 4 вершинах.

2. Докажите, что цикл на пяти вершинах является плохим графом.

3. Пусть G  — хороший граф, U  — некоторое подмножество его вершин. Граф H  состоит из всех вершин, лежащих в U  , и всех ребер графа G  , соединяющих эти вершины. Докажите, что граф H  тоже хороший.

4. Назовём раздвоением вершины v  операцию, добавляющую в граф вершину v′ , соединенную ровно с теми же вершинами, что и   v  . Докажите, что граф, получающийся из одной вершины операциями добавления висячей вершины, раздвоения вершины с добавлением ребра   ′
vv и раздвоения вершины без добавления ребра   ′
vv , является хорошим.

Источники: ЮМШ - 2024, сюжет 2 (см. yumsh.ru)

Показать ответ и решение

1. В полном графе на четырех вершинах есть только 2 вида остовных деревьев: 1) цепь длины 4; 2) три вершины, "висящие"на четвертой.

Каждое дерево первого вида даст в остовный многочлен одночлен xixj  , i⁄= j  , причем каждый одночлен будет представлен 2 раза.

Каждое дерево второго вида даст в остовный многочлен одночлен x2i  , где i  — "вершина"остова.

В итоге получим многочлен:

pict

2. Распишем PC = x1x2x3+ x2x3x4+ x3x4x5+ x4x5x1+ x5x1x2
  5  . Поскольку многочлен PC
  5  линеен по каждой переменной, получаем, что каждая из переменных живет только в одной из скобок. Тогда переменные вынуждены разбиться на скобки 2-2-1 или 3-1-1, что дает нам не более четырех мономчиков, противоречие.

3. Давайте сначала заметим, что можно последовательно выкидывать вершины по одной с сохранением связности, если U  связно. (Если несвязно, то просто 0 получится и все).

Для этого нужно подвесить за U  и поочередно удалять вершины с самого нижнего уровня. Теперь нужно понять, что при удалении только одной вершины v  граф остается хорошим. Для этого подставим 0 в xv  . Получим, что все слагаемые, в которые xv  входило в хотя бы первой степени, обнулились, а значит остались в точности те, где v  — висячая вершина. А все такие деревья устроены так: выбрано дерево в графе G∖v  , и потом одна из вершин из окрестности v  соединена с v  . Тогда многочлен после подстановки нуля равен               ∑
PG∖v(x1,...,xn)⋅( u∈N(v)xu)  . Подстановка нуля сохраняет раскладываемость на множители, значит PG∖v  тоже раскладываемый, значит, при удалении вершины v  граф останется хорошим.

4. Сначала докажем вспомогательный факт про такой тип графов.

Лемма о раздвоении без добавления ребра. Пусть дан граф G  на n  вершинах. Рассмотрим граф G1  , полученный из G  добавлением вершины vn+1  и соединением ее со всеми вершинами из NG(vn)  , но не самой vn  . Тогда

                                   (  ∑      )
PG1(x1,x2,...,xn+1)= PG(x1,...,xn+ xn+1)(       xv).
                                    v∈NG(vn)

Доказательство. Давайте заметим, что любое дерево в графе G  устройство следующим образом — на всех вершинах, кроме v
 n  , берется некоторый лес, такой, что в каждой компоненте есть хотя бы одна вершина из N (v )
 G  n  , и потом вершина v
 n  соединяется с ровно одной вершиной из каждой компоненты. Обозначим за L  множество всех таких лесов, за t(K)  — число компонент связности в лесу K  , и назовем A1,A2,...At  пересечения множеств NG (v)  с компонентами связности леса K  . Тогда из рассуждений выше

                ∑  (  ∏            t(∏K)( ∑   )       )
PG(x1,x2,...,xn) =    (       xdvegK(v)−1    (    xv) xtn(K)−1).
               K ∈L  v∈V|v⁄=vn         i=1  v∈Ai

Теперь давайте поймём, как устроены деревья в G1  . Там мы тоже берём лес, который содержит все вершины, кроме vn  , vn+1  , и такой, что каждая его компонента содержит хотя бы одну вершину из NG(vn)  , после чего одна из долей соединяется с обеими вершинами из vn  и vn+1  , а каждая из остальных t(K)− 1  долей — с ровно одной из этих вершин. Тогда в тех же обозначениях получается, что

pict

Теперь очевидно, что второй сомножитель равен PG(x1,x2,...,xn+ xn+1)  , и лемма доказана. ________________________

Пусть G
  1  - граф из леммы 1. Мы в лемме 1 уже выяснили как устроены деревья в графе G  , поэтому нужно разобраться с тем, как они устроены в G
 2  . Заметим, что они устроены так: мы снова берем лес с такими же условиями, а дальше делаем одно из двух - либо не проводим ребро между vn  и vn+1  , и это слагаемое такое же как в G1  , либо проводим, и тогда каждую из долей соединяем с ровно одной из этих вершин. Стало быть, сумма всех первых слагаемых даст нам PG1  , а сумма вторых равна

pict

Тогда получается, что

pict

доказали требуемое.

Ответ:

1. (x1+ x2 +x3+ x4)2

Ошибка.
Попробуйте повторить позже

Задача 3#83387

Цель этого сюжета — доказательство следующего утверждения:

Пусть p  — нечётное простое чисто. Докажите, что существует ровно (p− 3)∕2  упорядоченных четвёрок (a,b,c,d)  натуральных чисел, для которых ab+ cd =p  и max(c,d)<min(a,b)  .

Если r  — остаток по модулю p  , то назовём четвёрку (a,b,c,d  ), удовлетворяющую условиям выше, r  -четверкой, если c ≡ra  (mod p  ).

1. Докажите, что если r  -четвёрка существует, то r∈{2,3,...,p− 2} .

2. Докажите, что для данного r  существует не более одной r  -четвёрки.

3. Докажите, что если r  -четверка существует, то (p − r)  -четвёрки не существует.

4. Докажите, что для всякого r∈{2,3,...,p− 2} существует либо r  -четвёрка, либо (p − r)  -четвёрка.

Источники: ЮМШ - 2024, сюжет 1 (см. yumsh.ru)

Показать доказательство

1. Пусть существует r  -четверка (a,b,c,d)  при r= 1  . Тогда p=ab+ cd≡ ≡ ab+ rad= a(b+d)  (mod p  ). Получаем, что       .
a(b+ d)..p  . Тогда либо a  , либо b+ d  делится на p  . Тогда либо a ≥p  , b+ d≥ p  . В первом случаем получаем, что ab+ cd≥ p+cd> 1  . Во втором же ab+cd≥ 2b+d ≥p +1  . Получаем, что 1  -четверки не существует.

Пусть существует r  -четверка (a,b,c,d)  при r= p− 1  . Тогда p= ab+cd≡ ≡ab+ rad =a(b− d)  (mod p  ). Получаем, что       .
a(b− d)..p  . Тогда либо a  , либо b− d  делится на p  . Тогда либо a≥ p  , b+ d≥ p  (b− d ⁄=0  , поскольку b> d  ). В первом случаем получаем, что ab+ cd≥p +cd> 1  . Во втором же ab+cd≥ b+ d> b− d ≥p  . Получаем, что (p− 1)  -четверки тоже не существует.

2. Пусть (a,b,c,d)  , (a′,b′,c′,d′)  — две четверки, удовлетворяющие условиям с одним и тем же r  . Тогда ac′ ≡ara′ ≡ ca′ (mod p  ), аналогично bd′ ≡− rdd′ ≡ b′d  (mod p  ). Т.е. ac′− a′c  , bd′− b′d  кратны p  .

Предположим, что эти разности одновременно не равны нулю. Пусть не умаляя общности ac′− a′c> 0  , тогда ac′ >p >ab  , т.е. c′ > b  и тем более c′ > d  . Отсюда получаем, что |bd′− b′d|< max(bd′,b′d) <max(c′d′,b′c′)= b′c′ < a′b′ < p  откуда (т.к. |b′d− b′d| кратно  p  ) получаем bd′− b′d= 0  — противоречие.

Пусть теперь одна из исходных разностей равна нулю (не умаляя общности bd′− b′d  ). Отметим, что из равенств ab+ cd =p =a′b′+ c′d′ следует взаимная простота b  и d  , b′ и d′ . Поэтому из равенства bd′ = b′d  следует, что b= b′ и d =d′ , а из него — (a− a′)b= (c′− c)d  . В силу взаимной простоты b  и d  имеем a− a′ =dx  , c′− c =bx  . При x> 0  это противоречит условию c′ < b′ = b  , при x< 0  — условию c< b  . Значит x =0  , a =a′ , c= c′ — четверки полностью совпадают.

3. Пусть (a,b,c,d)  , (a′,b′,c′,d′)  — две четверки, удовлетворяющие условиям с r  и c r′ = p− r  соответственно. Тогда ac′ ≡− ara′ ≡ −ca′ (mod p  ), аналогично bd′ ≡ −rdd′ ≡−b′d  (mod p  ). Т.е. ac′+a′c  , bd′+b′d  кратны p  .

Пусть c′ ≥ b  , а значит c′ > c,d  , тогда, аналогично прошлому пункту, bd′+b′d< c′d′+b′c′ < c′d′+b′a′ = p  — противоречие с делимостью на p  . Значит c′ < b  и, аналогично c< b′ , d′ < a  , d< a′ . Тогда a′c+ac′ <ab+ a′b′ < 2p  , поэтому из делимости ac′+a′c= p  и аналогично b′d+bd′ = p  .

Предположим теперь, не умаляя общности, что a  — наибольшее из чисел. Вычитая из ab+cd  равное ему ac′+ ca′ , получаем a(b− c′)=c(a′− d)  , откуда из взаимной простоты a  и c  получаем, что a′− d  делится на a  — противоречие с тем, что a< a′ , a′− d> 0  .

4. Рассмотрим на плоскости множество всех векторов (x,y)  с целыми координатами x,y  такими, что y ≡ rx  (mod p  ) или y ≡(p− r)x  . Отметим, что это множество вместе с каждым вектором (x,y)  содержит также и (±x,±y)  . Рассмотрим в нашем множестве вектор с минимальной суммой координат. В силу замечания выше можно считать, что вектор u:= (a,c)  , где a,c>0  , a ⁄=c  (на осях координат и на биссектрисах углов между ними такой вектор лежать не может, поскольку 2≤ r≤p − 1  ), если c ≡(p− r)a  (mod p  ), то переобозначим r  и p− r  . Предположим пока, что a> c  . Рассмотрим прямую ℓ  с уравнением xc− ya= p  . Будем искать точку (d,−b)  на этой прямой такую, что d> 0,d <a,d< b,c <b  — тогда четверка (a,b,c,d)  и будет искомой. Заметим, что если (x,y)∈ℓ  , то (x− a,y − c)∈ℓ  .

Прямая ℓ  где-то пересекает прямую y+ x= 0  . Пусть точка (x0,y0)∈ ℓ  с целыми x0,y0  лежит выше прямой y+ x= 0  , а точка v0 :=(x0− a,y0− c)  — (нестрого) ниже.

Во-первых, проверим, что x0− a >0  . В самом деле, в противном случае x0 ≤ a  . Из выбора вектора u  имеем a+ c≤ |x0− a|+|y0− c|= a− x0 +|y0 +c| . Если c≥y0  , то a− x0+ |y0− c|= a+ c− x0− y0 < a+ c  — противоречие. Если же y0 >c  , то p =x0c− y0a <ac− ac= 0  — снова противоречие.

Итак, x0− a> 0  . Поскольку (x0− a)+ (y0− c)≤ 0  , имеем y0 − c< 0  . Если y0 ≥ 0  , то 0< x0− a ≤c− y0 ≤ c  и обе координаты вектора v0  по модулю не больше, чем c  — это опять противоречит выбору u  . Значит, y0 < 0  и c− y0 > c  . Теперь выберем наибольшее целое неотрицательное m  , при котором x0− a− ma≥ 0  . Ясно, что это неотрицательное значение строго меньше, чем a  . Тогда вектор v0− mu =(x0− a− ma, y0− c− mc)  и есть искомый вектор. Действительно, все нужные неравенства уже установлены, осталось только исключить случай x0 − a− ma =0  , но в таком случае из уравнения прямой ℓ  получаем xc− ya= p  , − (y0− c− mc)a =p  , что невозможно в силу того, что a> c> 0  , − y0+c +mc ≥1 +c+ mc≥ 2  .

Наконец обратимся к случаю c> a  . В этом случае обозначим a′ =c  , c′ = a  и построим точно так же четверку (a′,b′,c′,d′)  со всеми нужными свойствами, но такую, что, наоборот a′ ≡rc′ (mod p  ). В этом случае, очевидно, (b′,a′,d′,c′)  будет p − r  -четверкой, что нам подходит.

Ошибка.
Попробуйте повторить позже

Задача 4#76655

Сумма всех натуральных делителей числа n  более чем в 100 превосходит само число n  . Докажите, что есть сто идущих подряд чисел, каждое из которых имеет общий делитель с n  больший 1.

Источники: ЮМШ-2023, 11 класс, отборочный тур (см. yumsh.ru) | ЮМШ-23/24, 11 класс, 1 отборочный тур (см. yumsh.ru)

Показать доказательство

Сначала докажем лемму.

_________________________________________________________________________________________________________________________________________________________________________________

Лемма.

Пусть φ (n)  - функция Эйлера числа n.  (Количество чисел от 1  до n  взаимно простых с n.  ) Тогда для любого натурального числа n >1  справедливо неравенство

∑     n2
  d < φ(n)-
d|n

_________________________________________________________________________________________________________________________________________________________________________________

Доказательство леммы.

Запишем сумму делителей числа через произведение сумм степеней его простых делителей. Если n =pα1pα2...pαk,
    1  2    k  то

∑            2       α1        2      α2           2       αk
  d =(1+ p1+p1+ ...+ p1 )(1+ p2+ p2+ ...+ p2 )...(1+ pk +pk+ ...+ pk )
d|n

Используя формулу суммы геометрической прогрессии, получаем:

∑  d= (1+ p + p2 +...+ pα1)(1+ p +p2+ ...+ pα2)...(1+ p +p2+ ...+ pαk)=
d|n        1  1       1     2   2       2        k  k       k

  (pα11+1 − 1)(pα22+1− 1)...(pαk+1− 1)
= ----(p1−-1)(p2-− 1)...(pkk− 1)--.

Функция Эйлера вычисляется по формуле φ(n)=pα11−1(p1− 1)pα22−1(p2− 1)...pαkk− 1(pk− 1).  Тогда чтобы получить φ(n)  в знаменателе, домножим числитель и знаменатель на pα11−1pα22−1...pαkk−1

(pα11+1−-1)(pα22+1−-1)...(pαkk+1−-1)=
    (p1− 1)(p2− 1)...(pk− 1)

   α1−1 α2−1   αk−1 α1−1    α2−1       αk−1
= p1--p2α1−.1..pk--(pα12−1-− 1)(p2-α−k−11)...(pk---−-1)=
       p1   (p1− 1)p2   (p2− 1)...pk   (pk− 1)

  (p2α1 − pα1−1)(p2α2− pα2−1)...(p2αk− pαk−1) p2α1p2α2...p2αk  n2
= --1----1-----2--φ(2n)------k----k----< -1--2φ(n)--k--= φ(n)

_________________________________________________________________________________________________________________________________________________________________________________

Решение задачи.

По условию и лемме

     ∑     -n2-
100n < d|nd< φ(n).

Тогда

100n< -n2-⇒ φ(n)< n-.
      φ(n)        100

То есть количество чисел от 1  до n  взаимно простых с n  меньше -n-
100.

Рассмотрим два случая: n  делится на 100  и n  не делится на 100.

1. Число n  делится на 100.  Тогда можно разбить числа от 1  до n  на n--
100  групп по 100  идущих подряд чисел. Если количество чисел от 1  до n  взаимно простых с n  меньше n--
100  , то хотя бы в одной группе не будет числа взаимно простого с n

2. Число n  не делится на 100.  Тогда среди чисел 2  до n  можно выделить  -n-
[100]  групп по 100  идущих подряд чисел. Если в каждой группе будет число взаимно простое с n  , то чисел взаимно простых с n  хотя бы  n
[100]+ 1  (1  тоже взаимно проста с n  ). Это противоречит тому, что количество чисел от 1  до n  взаимно простых с n  меньше n
100-

Ошибка.
Попробуйте повторить позже

Задача 5#76654

Докажите, что для любого x∈ [0;2]  верно

 x    ∘ -------
2 +1 −  10,5x+ 4≤0

Источники: ЮМШ-2023, 11 класс, отборочный тур (см. yumsh.ru) | ЮМШ-23/24, 11 класс, 1 отборочный тур (см. yumsh.ru)

Подсказки к задаче

Подсказка 1

Немного преобразуем неравенство так, чтобы нам приходилось сравнивать показательную функцию с функцией с корнем. Как они выглядит на графике? Что у них общего и чем они различаются?

Подсказка 2

Одна из них - выпуклая, другая - вогнутая. Ка кто можно использовать, сравнивая значения в некоторых точках? Какие точки стоит рассмотреть, чтобы применить эти свойства?

Подсказка 3

Рассмотрите точки, в которых графики пересекаются.

Показать доказательство

Решение 1.

Перепишем неравенство, данное в условии:

 x  ∘-------
2 ≤  10,5x+ 4− 1.

Посмотрим на график степенной функции. Если соединить две точки, принадлежащие графику, отрезок их соединяющий лежит выше графика.

С графиком функции y =√10,5x-  наоборот: если соединить две точки, принадлежащие графику, отрезок их соединяющий лежит ниже графика. График функции √-------
 10,5x+ 4− 1  это сдвинутый по осям абсцисс и ординат график функции    √----
y = 10,5x.  Значит, и для графика функции √ -------
  10,5x+ 4− 1  верно: если соединить две точки, принадлежащие графику, отрезок их соединяющий лежит ниже графика.

Подставим значения x =0, и x= 2  в левую и правую части неравенства. Получаем, что графики функций  x  √-------
2  и 10,5x+ 4− 1  проходят через точки (0;1) и (2;4).  Тогда все значения функции  x
2  лежат ниже отрезка, соединяющего точки (0;1) и (2;4),  а все значения √-------
 10,5x+ 4− 1  выше.

То есть в каждой точке отрезка [0;2]  все значения функции  x
2  не меньше чем значения √ -------
  10,5x +4− 1.

    ∘-------
2x ≤ 10,5x +4− 1

 x     ∘ -------
2  +1−   10,5x +4 ≤0.

Решение 2.

Обозначим

      x     ∘ -------
f(x)= 2 +1−   10,5x+4.

Докажем, что на отрезке [0;2]  верно f(x)≤ 0.

Производная f(x)  на отрезке [0;2]

f′(x)= ln(2)⋅2x− -√--1----
              2 10,5x+ 4

Приравняем  ′
f (x)  к 0  :

             1
ln(2)⋅2x− 2√10,5x+-4 = 0

ln(2)⋅2x =-√--1----
        2 10,5x +4

 x∘-------  --1--
2  10,5x+ 4= 2ln(2)

Функции 2x и √10,5x+-4  – возрастающие на отрезке [0;2].  Тогда 2x√10,5x+-4  тоже возрастающая. Значит производная имеет не более одного корня на отрезке [0;2].  То есть f(x)  имеет не более одной точки экстремума на отрезке [0;2].

На концах f(0)= f(2)= 0.

Тогда если на отрезке [0;2]  нет точек экстремума и монотонность не меняется, то f(x)=0  на всем отрезке. Если точка экстремума лежит на отрезке [0;2],  о возможны два варианта:

1. Это точка минимума. Тогда функция убывает от 0 до точки минимума, а затем возрастает до 2.

2. Это точка максимума. Тогда функция возрастает от 0 до точки максимума, а затем убывает до 2.

Отметим, что f(1)<0

           ∘ --------     ∘---
f(1)= 21+ 1−  10,5⋅1+ 4= 3−  14,5 <0

Значит, возможен только первый вариант. Тогда f(x)≤ 0  на всём отрезке [0;2]

Ошибка.
Попробуйте повторить позже

Задача 6#76652

Окружности ω
 1  и ω
 2  пересекаются в точках A  и B  . Прямая l
1  , проходящая через точку A  , второй раз пересекла окружность  ω
  1  в точке C  , а ω2  — в точке D  . Прямая l2  , проходящая через точку B  , второй раз пересекла окружность ω1  в точке E  , а ω2  — в точке F.  Оказалось, что прямая CE  касается ω2  в точке G  (точка E  лежит на отрезке CG  ). Докажите, что BG  — биссектриса ∠DBE  .

Источники: по мотивам отборочного тура ЮМШ 23/24

Подсказки к задаче

Подсказка 1

Посчитаем уголочки! Как использовать вписанность? Выразим угол FBE и подумаем, как считать углы дальше.

Подсказка 2

Угол между касательной равен вписанному углу, опирающему на хорду. Найдите угол DFC и свяжите его с DAF :) Чему равен угол FBE?

Показать доказательство

Поскольку четырехугольники ABEC  и ADGB  вписанные, то

∠BEG = ∠CAB = ∠BGD

Также, поскольку прямая CE  касется окружности ω2  , по теореме об угле между касательной и хордой

∠BDG  = ∠BGE

Теперь рассмотрим треуугольники △BEG  и △BGD.  В них имеются две пары равных углов (∠BEG = ∠BGD, ∠BGE = ∠BDG ),  значит, третьи углы у них тоже равны, т.е.

∠DBG  = ∠GBE

Получаем, что BG  — биссектриса угла ∠DBE.

PIC

Замечание. Если точка G  лежит внутри отрезка CE,  то чертёж меняется, но решение остаётся аналогичным. Попробуйте решить задачу и для этого расположения точек.

Ошибка.
Попробуйте повторить позже

Задача 7#76651

Найдите количество функций f :{1,2,3,4,5,6} → {1,2,3,4,5,6} для которых верно f(f(f(x)))=x  для всех x∈ {1,2,3,4,5,6} .

Источники: ЮМШ-2023, 11 класс, отборочный тур (см. yumsh.ru) | ЮМШ-23/24, 11 класс, 1 отборочный тур (см. yumsh.ru)

Показать ответ и решение

Возьмем какое-нибудь число a ∈{1,2,3,4,5,6}.  Тогда возможны два варианта:

1. Если f(a)= a,  то и f(f(f(a)))= a.

2. Предположим f(a)= b и b⁄= a.  Тогда f(b)= c, где c⁄= a,c⁄= b.  Иначе
(а) Если f(b)= a, то f(f(f(a)))= f(f(b)) =f(a)=b ⁄=a.
(b) Если f(b)= b, то f(f(f(a)))= f(f(b))= f(b) =b⁄= a.
И так как a =f(f(f(a)))= f(f(b))= f(c),  то f(c)=a.

Таким образом, для любого a∈ {1,2,3,4,5,6} либо f(a)=a,  либо есть три различных числа таких, что f(a)= b,f(b) =c и f(c)= a.

При этом любая функция с таким свойством подходит. Тогда найдем число функций с необходимым свойством.

1. Нет ни одной тройки элементов, что f(a)= b,f(b)= c, и f(c)= a.  Значит, для всех чисел a∈{1,2,3,4,5,6} верно f(a)= a.  Такая функция одна.

2. Есть одна тройка элементов, что f(a)= b,f(b)= c, и f(c)=a.  Выбрать тройку можно C36  способами. При этом есть два способа задать функцию в тройке. Итого 2C36  функций.

3. Есть две тройки элементов, что f(a)= b,f(b)= c, и f(c)= a.  Выбрать первую тройку можно C36  способами, остальные три элемента образуют вторую тройку. Но варианты, в которых выбрали в первую тройку a,b,c  и выбрали все кроме a,b,c  одинаковые. То есть C36 :2  способов разбить элементы на две тройки. При этом в каждой тройке есть два способа задать функцию. Итого 2⋅2⋅C36 :2 =2C36  функций.

Всего число функций равно

1 +2C36 + 2C36 = 81
Ответ: 81

Ошибка.
Попробуйте повторить позже

Задача 8#76650

Квадратный трёхчлен x2− px+ q  с натуральными коэффициентами имеет два корня. Оказалось, что если q  уменьшить на 30%  , то разность его корней увеличится в 5 раз. Найдите такой трёхчлен с наименьшей возможной суммой корней.

Источники: ЮМШ-2023, 11 класс, отборочный тур (см. yumsh.ru) | ЮМШ-23/24, 11 класс, 1 отборочный тур (см. yumsh.ru)

Подсказки к задаче

Подсказка 1

Давайте вспомним, как мы находим корни в приведённом квадратном уравнении! А как можно выразить разность корней?

Подсказка 2

Да, корни находим через обычную формулу с дискриминантом. Тогда разность корней, это просто корень из дискриминанта нашего уравнения! Остаётся составить уравнение, в котором будет отражаться условие задачи!

Подсказка 3

Верно, из условия мы получаем, что 20p² = 81q. Остаётся найти минимальные p и q

Показать ответ и решение

По формуле корней квадратного уравнения имеем: x  = p±√p2−4q.
 1,2     2  Следовательно, x  − x = ∘p2-− 4q.
 2   1  После уменьшения q  на  30%  разность корней станет равна ∘ 2---(7--)
  p − 4 10q.  Следовательно, при условии, что  2
p − 4q ≥ 0,  получаем

 ∘ ------ ∘ -------
5  p2− 4q = p2− 14q ⇐⇒ p2 = 81q > 4q ⇐ ⇒ 4⋅5⋅p2 = 34 ⋅q.
                5         20

По теореме Виета сумма корней квадратного трёхчлена x2− px+ q  равна p.  Наименьшее натуральное p,  удовлетворяющее равенству 4⋅5⋅p2 = 34⋅q,  это 32 =9,  так как p2  должно делиться на 34.  Тогда q = 20.

Ответ:

 x2− 9x+ 20

Ошибка.
Попробуйте повторить позже

Задача 9#69411

Общий сюжет. Пусть f(a,b)  — это количество способов пронумеровать клетки доски a ×b  номерами от 1 до ab  так, что каждая следующая находится в одной строке или столбце хотя бы с одной из предыдущих.

1. Найдите f(3,2)  .

2. Покажите, что

         (  )
f(a,a)≤ 100-a2!
          2a

3. Докажите, что

        ( 2)
f(a,a)≥ --a-!a
       100⋅8

4. Найдите f(a,2)  .

Замечание. “Найти” означает выписать ответ в замкнутом виде.

Источники: ЮМШ-2023, 11 класс, 2 сюжет (см. yumsh.ru)

Подсказки к задаче

Пункт 1), подсказка 1

Чтобы начать расставлять числа, нужно как-то зафиксировать хоть что-то. Попробуйте зафиксировать 1 и понять, почему так можно делать. Как расставлять дальше?

Пункт 1), подсказка 2

Для 2 у нас есть 3 варианта. У каждого из них свои ограничения на следующие клетки, которые несложно разобрать по отдельности.

Пункт 2), подсказка 1

Попробуем расставлять числа по возрастанию, тогда будет проще рассуждать. Если мы поставим 1 в нижний левый угол, то какова доля клеток, куда мы можем поставить 2? А 3? Как выглядит общий случай?

Пункт 2), подсказка 2

Доля мест, куда мы можем поставить 2, не больше чем 2/а(почему?). Подумаем о том, как будет меняться такая доля с каждый новым числом.

Пункт 2), подсказка 3

С каждым новым числом общее коколичество свободных мест уменьшается на 1, а количество подходящих увеличивается максимум на (а-1). С помощью неравенства можно понять, до какого числа мы можем считать долю как (i+1)/a. Теперь у нас есть количество вариантов для каждого числа, каким тогда будет общее мест?

Пункт 2), подсказка 4

Произведение количества вариантов для каждого числа! Осталось лишь доказать, что такое число не больше 100 * (a^2)!/(2^a).

Пункт 3), подсказка 1

Отлично, количество вариантов уже посчитано в предыдущем пункте. Теперь нужно доказать, что это число больше того, что нас просят в этот раз. Попробуем доказать по индукции по а!

Пункт 3), подсказка 2

Базу проверить несложно. Теперь попробуем доказать, что (a+1)^(a-1) <= a^(a-2)*8a. Для этого попробуем преобразовать неравенство, тогда у нас получится найти связь с числом e!

Показать ответ и решение

1. Заметим, что при перестановке столбцов и строк в расстановке чисел она всё ещё будет удовлетворять условию. Значит, можно посчитать число способов с 1  в нижнем левом угле и затем умножить его на 6  . Разберём возможные позиции для двойки:

2
1

=⇒ 4!  (остальные числа можем поставить как угодно)

1 2

=⇒ 3⋅3!  (нам нельзя ставить 3  в верхний правый угол. выбираем для неё одно из трёх других мест и расставляем остальные как угодно)

1 2

=⇒ 3⋅3!  (симметричен предыдущему случаю)

Тогда f(3,2)= 6(4!+ 2⋅3⋅3!)= 360.

2. Будем расставлять числа по возрастанию. Переставим столбцы и строки так, чтобы 1  находилась в левом нижнем углу. Рассмотрим долю мест, на которые мы можем поставить 2  . Эта доля = 2(aa−2−1)1 ≤ 2a  . Для 3  эта доля будет (a−1)+(aa−21−)2+(a−2)≤ 3a  . И в общем случае: с каждым новым числом общее количество свободных мест уменьшается на 1, а количество подходящих увеличивается максимум на (a− 1)  . Сравним:

(i+-1)(a+-1)≤ i+1-
  a2− i      a

что при i≤ a  верно.

Тогда общее количество мест

 2 (a−-1)!
(a)!aa−2

Докажем, что

 2 (a−-1)!     (a2)!
(a )!aa−2 ≤ 100 2a

что равносильно

 a            a−2
2 ⋅(a− 1)!≤ 100a

По неравенству о средних:

         a2
x(a− x)≤ 4

Тогда

2a⋅(a− 1)!≤ 8⋅1⋅(a − 1)⋅aa− 1 ≤ 100aa−2

что и требовалось.

3. Докажем, что

            ( 2)
(a2)!(a−a−12)!-≥--a-!a
    a      100⋅8

что равносильно

           a   a−2
(a − 1)!⋅100⋅8 ≥ a

Базу a= 2  легко проверить

100⋅64≥ 1

По предположению индукции

----aa−2----≤ 1,
(a− 1)!⋅100⋅8a

а для перехода надо доказать

-(a+-1)a−1--
(a)!⋅100⋅8a+1 ≤ 1

Тогда докажем

      a−1         a−2
-(a+-1)-a+1 ≤----a------a,
(a)!⋅100⋅8     (a− 1)!⋅100⋅8

что равносильно

(a+ 1)a−1 ≤ aa−2⋅8a ⇐⇒   (a-+1)a−1 ≤ 8
                          a

    1a−1
(1+ a)  ≤ 8

а это уже известное неравенство (можно оценить даже не числом 8, а числом Эйлера - числом e  ), которое тоже легко проверить по индукции для любого натурального a.

4. Будем расставлять числа по возрастанию. Пусть мы начали с какой-то из двух строк. Нам интересен первый момент, когда мы “перескочим” на другую, так как после этого остальные числа можно расставить как угодно.

k
1 2 3

Пусть мы “перескочили” на числе k +1  . Посчитаем количество таких расстановок: мы выбираем одну из двух строк начальной, затем расставляем числа от 1  до k  в этой строке, затем выбираем, куда поставить k+ 1  — для этого есть только k  способов, так как мы должны поставить его в один столбец с любым из k  чисел. Все остальные числа можем расставить как угодно:

2⋅a⋅(a− 1)⋅...⋅(a− k+ 1)⋅k ⋅(2a− (k +1))!

Таким образом,

      ∑a
f(a,2)=   2⋅a⋅(a− 1)⋅...⋅(a− k+ 1)⋅k ⋅(2a− (k+ 1))!=
      k=1

 ∑a   --a!--
=k=12⋅(a− k)! ⋅k⋅(2a− (k+ 1))!

Что делать с такой суммой не очень понятно, хочется выразить её через Cnm  — с ними мы умеем работать, то есть мы хотим получить выражение вида (nn+!mm!)!  :

f(a,2)= ∑a 2⋅--a!--⋅k⋅(2a− (k+ 1))!=
       k=1  (a− k)!

           a                        a
=2⋅a!(a− 1)!∑  -k(2a−-k−-1)! =2 ⋅a!(a − 1)!∑ kCa−1
          k=1(a− 1)!(a− k)!          k=1  2a−k−1

Осталось посчитать эту сумму. Распишем её:

 a
 ∑ kCa−1   = Ca−1 +2Ca−1 + 3Ca−1 + ...+ aCa−1
k=1  2a−k−1   2a−2    2a−3   2a−4        a− 1

Пусть у нас есть 2a− 1  игроков, которые упорядочены по убыванию своей силы. мы выбираем среди них команду из a  игроков и капитана, который должен быть сильнее всех игроков. С одной стороны, мы можем просто набрать команду из a+ 1  игроков и назначить капитаном самого сильного из них. Это же число способов можно посчитать по-другому: выберем самого сильного после капитана участника команды. Пусть он имеет номер k+ 1  (то есть сильнее него ровно k  человек). Тогда у нас есть k  способов выбрать капитана, и потом нам нужно набрать команду из a− 1  человека из 2a− k− 2  . Получается, что

 a
 ∑ kCa2−a1−k−1 = Ca2+a1
k=1
Ответ:

1. 360

2. что и требовалось доказать

3. что и требовалось доказать

4.  a+1
C2a

Ошибка.
Попробуйте повторить позже

Задача 10#69410

Общий сюжет. Дан остроугольный неравнобедренный треугольник ABC  . На меньшей дуге BC  его описанной окружности выбирается переменная точка D  . Точка  ′
D симметрична точке D  относительно прямой BC  . Луч    ′
CD пересекает отрезок AB  в точке E  . Луч    ′
BD пересекает отрезок AC  в точке F  .

1. Докажите, что окружность ω  , описанная около треугольника D ′EF  , проходит через фиксированную точку.

2. Известно, что в положении D = D1  центр окружности ω  лежит на отрезке AB  , а в положении D = D2  — на стороне AC  . Отрезки BD2  и CD1  пересекаются в точке X  . Докажите, что прямые AX  и BC  перпендикулярны.

3. Окружность ω  вторично пересекает окружность ABC  в точке G  . Докажите, что прямая   ′
D G  проходит через фиксированную точку.

4. Докажите, что если ∠A =60∘ , то расстояние от вершины A  до точки Торричелли треугольника ABC  не превосходит диаметра окружности ω  (при любом положении точки D  ). Напомним, что точкой Торричелли треугольника ABC  называется такая точка  T  , что ∠AT B =∠BT C =  ∠CT A =120∘ .

Источники: ЮМШ-2023, 11 класс, 1 сюжет (см. yumsh.ru)

Подсказки к задаче

Пункт 1, подсказка

Чтобы найти фиксированную четвертую точку на окружности, попробуем посчитать углы, чтобы найти вписанный четырехугольник! Точка D лежит на окружности, ее отражают, поэтому посчитать угол FD’E не составит труда! Какой угол может дополнять его до 180?

Пункт 2, подсказка 1

Если центр окружности лежит на AB или AC, то несложно найти точное расположение центра, т.к. отрезки на указанных прямых являются хордами окружностей. Хочется подробнее рассмотреть D1’ и D2’, а точнее углы, которые на них опираются. Найти их не сложно в силу того, что они лежат на окружности.

Пункт 2, подсказка 2

Углы CD1’A и BD2’A будут прямыми(почему?). Итак, два перпендикуляра к пересекающимся отрезкам пересекаются на рисунке, а нам хочется найти другую перпендикулярность. На какой объект это может намекать?

Пункт 2, подсказка 3

На ортоцентр! Сделаем так, чтобы точка пересечения BD2’ и CD1’ стала ортоцентром нового треугольника! Мы найден прямую, к которой перпендикулярен отрезок, одной из вершин которого является А - теперь мы ближе к тому, что нам нужно доказать! Осталось лишь доказать, что этот отрезок лежит на прямой AX, а третья сторона треугольника, в котором мы нашли ортоцентр, параллельна BC!

Пункт 3, подсказка 1

Тут хочется угадать ту самую фиксированную точку…очень часто на олимпиадах помогает сделать красивые и точные чертежи, чтобы попробовать хотя бы интуитивно узнать точку. Докажем, что все прямые будут проходить через середину BC.

Пункт 3, подсказка 2

Мы понимаем, что через точку М проходит прямая D’G, где G - точка пересечения окружностей. Доказывать вписанность там, где много окружностей и симметрии должно быть проще, чем доказывать, что прямая проходит через середину отрезка. Поэтому попробуем доказать, что точка пересечения MD’ с малой окружностью лежит на окружности ABC. Итак, чем же мы можем пользоваться? Вписанностью D’FAGE, а также тем, что M - середина, т.е. может помочь в симметрии. На правильные действия и на полезный подсчет углов может намекать и то, что точка D лежит на окружность ABC и симметрична D’ относительно BC.

Пункт 4, подсказка 1

Интересно, что благодаря точке Торричелли у нас появляется угол, который с углом A в сумме дает 180. Благодаря пункту 1) задачи мы понимаем, на какой окружности лежит точка Торричелли. Попробуем рассмотреть точку T’, изогонально сопряженную с точкой Торричелли. Что можно о ней сказать?

Пункт 4, подсказка 2

Она тоже лежит на окружности BD’C! Раз уж у нас есть окружностью, отметим ее центр N. Понятно, что он лежит на дуге BC. Не совсем понятно, как работать с самой точкой Торричелли, поэтому попробуем найти другой отрезок, равный AT. В этом нам могут помочь равные треугольники. Какие треугольники очень похожи на равные между собой?

Пункт 4, подсказка 3

Если треугольники ATN и AT’N равны, то AT=AT’. Пока не совсем понятно, что делать дальше, поэтому просто попробуем изобразить то, что узнали в предыдущем пункте задачи: точку M, G, через которую проходят прямые MD’(помним, что D’ лежит на той же окружности, где и T, T’. Отметим точку пересечения AM и окружностей BTC и ABC(K’ и K). Пока что видим только много симметрий, имеет смысл записать степень точки M и цепочку равенств. К какому выводу можно прийти?

Пункт 4, подсказка 4

Понимаем, что AGD’K вписанный. Теперь мы можем сравнивать AT’ и диаметр окружностей AGD’K. Значит, нам нужен диаметр. Точки T, T’, K - все лежат на одной окружности. Быть может, попробовать доказать, что какие-то из них совпадают?

Пункт 4, подсказка 5

Точка T’ на самом деле совпадает с точкой K! Осталось лишь осознать, почему AK не больше диаметра, который нам нужен)

Показать доказательство

PIC

1. Пусть ∠A = α  . Тогда ∠BDA = 180∘ − α  . Из симметрии ∠BD ′A= ∠BDA  , но тогда ∠A+ ∠ED ′F = 180∘ , то есть AED ′F  - вписанный, то есть для любого выбора точки D  окружность ω  проходит через фиксированную точку A  .

PIC

2. Если центр ω  лежит на отрезке AB  , то AE  - диаметр, а ∠AFE  - прямой. Тогда углы   ′
AD2B  и    ′
AD 1C  - прямые. Рассмотрим точку  ′
X , симметричную точке X  относительно BC  . Заметим, что если    ′
AX перпендикулярно BC  , то и AX  будет перпендикулярно BC  . Продлим    ′
AD 2  до пересечения с    ′
BD 2  в точке L  и    ′
AD 1  до пересечения с    ′
BD 2  в точке M  . Тогда    ′
MD 2  и   ′
LD1  - высоты в треугольнике AML  , X  - его ортоцентр, AX  - третья высота. Докажем, что ML||BC  : Действительно, из вписанности    ′ ′            ′ ′
BD 1D2C∠LCB = ∠BD 2D 1  .     ′ ′
MLD 2D1  - вписанный (   ′        ′     ∘
∠LD2M = ∠MD 1L= 90 ), откуда    ′  ′    ′
∠BD2D 1 = ∠D1LM =⇒ ML ||BC =⇒ AX  перпендикулярно BC

3. Докажем, что все прямые будут проходить через точку M  - середину BC  . Будем доказывать с конца - проведём через точки  M  и D ′ прямую, и докажем, что она пересекает окружность ABC  в нужной нам точке. Пусть это точка G′ . Отразим D′ относительно точки M  , получим точку U  . ∠BUC = ∠BD ′C = ∠BDC  , поэтому U  попадёт на описанную окружность ABC  . Посчитаем углы: ∠BD ′U = ∠D′UC  так как BDCD  ′ - параллелограмм, ∠G′UC =∠G ′AC  как вписанные, ∠G ′D ′F =∠BD ′M  как вертикальные, откуда ∠G ′D′F =∠G ′AF  , то есть G′ADF  - вписанный, что и требовалось доказать.

PIC PIC

4. Пусть T  - точка Торичелли треугольника ABC  . Заметим, что она лежит на дуге   ′
BD C  (так как          ∘    ∘
∠BTC = 120 = 180 − ∠A  Рассмотрим точку  ′
T , изогонально сопряжённую точке T  . Заметим, что               ∘
α +β +γ+ δ = 120 , и         ∘
β+ γ = 60 , откуда     ′     ∘    ∘    ∘
∠BT C = 180 − 60 = 120 , и точка  ′
T лежит на дуге    ′
BD  C  . Также заметим, что               ∘
x +y =y +δ = 60 , откуда y =δ  , то есть     ′
∘AT B  касается CB  в точке B  . Тогда мы можем определить точку T ′ как точку пересечения двух окружностей, которые проходят через  A  и касаются BC  в точках B  и C  соответственно.

PIC

Пусть N  - середина малой дуги BC  . Докажем, что N  - центр окружности T′CB  . Рассмотрим точку пересечения биссектрис I  . Тогда ∠BIC = 90∘+ ∠A2-= 120∘ , то есть I  также лежит на дуге BD′C  , а по лемме о Трезубце мы знаем, что NI = NB = NC

PIC

Заметим, что (по определению изогонального сопряжения) AT  и AT ′ будут симметричны относительно биссектрисы AI  . Тогда в треугольниках ATN  и AT′N  : AN  - общая, ∠TAN = ∠T′AN  , TN = T′N  . Тогда возможны две ситуации:

PIC

Треугольникии либо равны, либо сумма двух их углов равна 180∘ Предположим, что вторая ситуация возможна. Тогда ∠NT A +∠NT ′A =  =180∘ , но ∠NT A> ∠NBA  , ∠NT ′A > ∠NCA  , откуда ∠NT A +∠NT ′A> ∠NBA + ∠NCA = 180∘ . Противоречие, следовательно треугольники ATN  и AT′N  равны, и AT =AT ′

PIC

Пусть M  - середина BC  . Проведём луч AM  , который пересечёт дугу BD ′C  в некоторой точке K  и дугу BDC  в некоторой точке  K ′ . Тогда из симметрии MK = MK ′ . Через точку M  и произвольную точку D′ на дуге проведем прямую, которая пересечёт окружность ∘ABC  в точке G  . (По доказанному ранее ω =∘GAD ′ ). Отразим D ′ относительно M  , получим точку D′1  Распишем степень точки:

MB ⋅MC = MK ′⋅MA  (∘ABC,M )
    ′
MK  ⋅MA  =MK  ⋅MA           ′
(MK = MK  )
MB  ⋅MC  = MD ′1⋅MG  (∘ABC,M )
MD ′⋅MG = MD ′1⋅MG  (MD ′ =MD ′1)

Откуда MD ′⋅MG = MK ⋅MA  , то есть любая окружность ω  проходит через точку K  .

PIC

Достроим BKC  до параллелограмма. Тогда

∠T′CB = ∠CBK ′ =∠K ′AC

∠T′BC = ∠BCK ′ =∠K ′AB

Это свойство выполнено и для точки K  , и для точки T′ . Но такая точка всего одна, следовательно, они совпадают, а хорда окружности всегда меньше или равна диаметру окружности!

Ошибка.
Попробуйте повторить позже

Задача 11#83912

 P  — некий полином с целыми коэффициентами, A  и M  — целые числа. Построим последовательность a
 n  , где a = A
 1  , и a   =P (a)
n+1     n  и пусть rn  — остаток от деления an  на M  .

1. Пусть P(x)= x2+ x+ 1,A = 1,M = 32022  . Докажите, что период последовательности rn  (то есть, такое наименьшее t  , что rn+t = rn  при достаточно больших n  ) равен 2.

2. Найдите длину предпериода той же последовательности (то есть такое наибольшее n  , что an+t ⁄= an  , где t  — период).

3. Назовем полином стабильным по модулю M  , если существует B  , такое что для любого A  найдется k  , для которого rk = B  . Докажите, что полином     3   2
f = x − x − 2  нестабилен по модулю M  , если M  является квадратом нечётного числа.

4. Докажите, что многочлен P (x)= x2− 3x +12  стабилен для бесконечного числа натуральных M  .

Источники: ЮМШ-2022, 11 класс, 3 сюжет (см. yumsh.ru)

Показать ответ и решение

1. Легко видеть, что остатки an  от деления на 3 чередуются с периодом 2 (1, 0, 1, 0, . . .) поэтому период остатков по модулю M = 32022  тем более не равен 1.
Покажем что он равен 2.
Заметим, что an+2 − an =a2n+1− a2n−1+an+1− an−1 = (an+1− an−1)(an+1+ an−1 +1)
Отсюда следует, что если an+1 − an−1  делится на 3k  , то тем же свойством обладает и an+2− an  , а если вдобавок an+1  , an−1  дают остаток от 1 деления на 3, то an+2 − an  делится на 3k+1  .
Учитывая, что такая ситуация имеет место при каждом четном n  , получаем, что соответствующее k  может неограниченно увеличиваться, в частности, an+2− an  делится на 32022  при некотором n= n0  (а значит и при всех n >n0  ). Поэтому период rn  равен двум.

2. Выпишем остатки от деления an  на 9 и на 27: легко убедиться, что это 2-периодические последовательности 1,3,4,3,4,...  и 1,3,13,21,13,21,...  соответственно.
Поэтому число (an+1+ an−1+ 1)  не делится на 3 при нечетных n  , делится на 3, но не на 9 при n= 2  и делится на 9, но не на 27 при четных n >2  .
То есть если v
 n  — степень вхождения 3 в число a   − a
n+1   n−1  , то v = 1
 2  , v =2
3  а дальше v    =v  + 2
 2k+1   2k  и v   = v
2k+2   2k+1  .
Отсюда легко видеть, что наибольшее s  такое, что v <2022
s  равно 2022, то есть a   − a
 2023   2021  — последняя среди разностей вида an+2− an  не кратная M  .

3. Пусть M =Q2  , тогда Q  - нечетное число.
Заметим, что f(2)= 23− 22− 2= 2  ,значит, достаточно показать, что существует число, проделывая операцию из условия над которым мы не получим 2.
Рассмотрим числа вида t= 2+ kQ  , где НОД(k;Q)= 1
f(t)= (2+ kQ)3 − (2+ kQ )2 − 2= Q3k3+ 5Q2k2+8Qk +2
Нетрудно заметить, что f(t)≡ 8Qk + 2(mod M )
То есть числа вида t= 2+ kQ  , где НОД(k;Q)= 1  переходят в себя, но число 2 не имеет такого вида, поэтому полином f = x3− x2 − 2  нестабилен по модулю M  , если M  является квадратом нечётного числа.

4. Индукцией по k  докажем, что для M = 7k  многочлен x2− 3x+ 12  стабилен.
Обозначим через a → b  , то что P(a)≡b(modM )
База k =1

0→ 5→ 1 → 31 → 3→ 5→ 12 → 3→ 5→ 13→ 5 → 1→ 34→ 2→  3→ 5→ 15→ 1 → 36 → 5→ 1→ 3

Таким образом, имеем цикл длины 3 везде одинаковый.
Переход k→ k+ 1
Пусть по модулю M = 7k  многочлен стабилизируется так, что всегда встретится r
Тогда по модулю M = 7k+1  остаток r  будет 7km+ r= r1
P (r1)≡r2− 3r+ 12 +7kn(2r− 3)(Mod 7k+1)  , что не зависит от n  , при 0≡ 2r− 3(Mod 7)
0 ≡2r− 3(Mod 7)⇔ 5 ≡r(Mod 7)  , что бывает по базе индукции, поэтому многочлен стабилизируется и по модулю 7k+1  .

Ответ:

1. что и требовалось доказать

2. 2021

3. что и требовалось доказать

4. что и требовалось доказать

Ошибка.
Попробуйте повторить позже

Задача 12#79619

Вася посмотрел на граф G  на n  вершинах и поставил на каждую вершину v  переменную x .
 v  После чего рассмотрел выражение

                  ∑    xixj
f (x1,...,xn)=2⋅(i,j)−-ребро---
                   n∑ x2i
                  i=1

Пусть m  и M  — минимум и максимум f.

(a) Пусть степень каждой вершины в графе равна d.  Найдите M.

(b) Докажите, что вершины графа G  можно покрасить в [M ]+1  цвет, так что любые две соседние вершины получат разные цвета.

(c) Пусть Z  — максимум выражения      ∑
g =       xixj
   (i,j)∈E (G)  при неотрицательных xi  с суммой 1.  Докажите, что

     (     )
Z = 1 1 −-1 ,
    2    w

где w  — максимальный размер множества вершин графа G,  попарно соединенных ребрами.

Источники: ЮМШ-2022, 11 класс, сюжет 1 (см. yumsh.ru)

Показать ответ и решение

(a) 

Оценка. Занесём 2 в числитель и оценим каждое слагаемое следующим образом

       2  2
2xixj ≤ xi +xj

Получим

    ∑    2xixj      ∑    (x2 +x2)
(i,j)−-ребро---- ≤ (i,j)−-ребро-i---j-
     n∑ x2            ∑nx2
     i=1 i            i=1 i

Так как у каждой вершины степень у каждой вершины в графе равны d,  то каждая  2
xi  в числителе встретиться ровно d  раз, следовательно

   ∑      2  2    n∑   2   ∑n  2
(i,j)− ребро(xi +xj) i=1dxi  di=1xi
-----∑n-2------= -n∑--2-= -n∑--2-= d
     i=1xi         i=1xi   i=1xi

Пример. Поставим во все вершины 1,  получим

          dn
f(1,...,1)= n = d

(b) Будем доказывать от противного.

Если граф нельзя покрасить в k  цветов, то в графе есть вершина степени меньше чем k,  то удалим с рёбрами. Полученный граф также нельзя будет покрасить в k  цветов, иначе покрасим его, а потом докрасим удалённую вершину. Продолжим этот процесс, он конечный, так как в графе конечное число вершин.

Значит, найдётся подграф, в котором степени вершин хотя бы [M ]+1.  Поставим в вершины этого подграфа 1,  а во все остальные вершины графа 0.  Тогда значение выражения f  станет равным [M]+ 1> M,  а это противоречит тому, что M  — максимум выражения f.

(c) Кликой графа называется подмножество его вершин, любые две из которых соединены ребром. Аналогично определяется антиклика

Пример. Найдём в графе максимальную клику, в его вершины поставим 1
w,  а в остальные 0.

Оценка.

    (     )
Z ≤ 1 1− 1-
   2     w

Рассмотрим расстановку, на которой достигается Z.  Если там есть вершина с 0, удалим её. По предположение

Z ≤ 1(1− -1),
    2    w

если максимальная антиклика не уменьшилась, и

   1(     1  )  1 (   1)
Z ≤ 2 1− w−-1  <2  1− w- ,

если максимальная антиклика уменьшилась. Таким образом сделаем все числа ненулевыми.

Обозначим S(v)  — сумму чисел в смежных с v  вершинах. Заметим, что если a  и b  — несмежные вершины и S(a)< S(b),  то можно заметить (x ,x)
  a b  на (0,x + x).
   a  b  Общая сумма не измениться, а Z  увеличиться, противоречие. Следовательно, если a  и b  — несмежные вершины, то S(a)=S (b).

Рассмотрим антиграф, проверим два случая:

1) Если он связен. Значит, для любых вершин a  и b  S(a)= S(b),  обозначим это число за S.  Следовательно по предположению

    1   1    1          1
Z = 2S > 2(1− w)⇒ S > 1− w

Рассмотрим вершину A  максимальной антиклики.

S(A)> 1− 1w-

Следовательно, число в A  плюс в вершинах, не смешных с A,  меньше 1w-.  Просуммируем по врем вершинам максимальной антиклики. Мы посчитали каждое число неменее 1 раза, значит сумма всех меньше, чем w⋅ 1-= 1
  w  . Противоречие, следовательно, такое невозможно.

2) Антиграф не связен.

Ответ:

(a) d

Рулетка
Вы можете получить скидку в рулетке!