Тема . Заключительный этап ВсОШ
Закл (финал) 9 класс
Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела заключительный этап всош
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#79858

Пусть a ,...,a
 1    25  — целые неотрицательные числа, а k  — наименьшее из них. Докажите, что

 √--   √--      √ --- [∘ ---------------]
[ a1]+ [ a2]+ ...+ [ a25]≥   a1+ ...+a25+ 200k

(Как обычно, через [x]  обозначается целая часть числа x,  то есть наибольшее целое число, не превосходящее x.  )

Источники: Всеросс., 2018, ЗЭ, 9.3(см. olympiads.mccme.ru)

Показать доказательство

Положим n = [√a-]
 i    i  . Тогда a < (n +1)2,
 i    i  а поскольку числа a
 i  целые, имеем a ≤ n2+ 2n.
 i   i    i  Если мы теперь покажем, что

∘----------------
 a1+ ...+ a25 +200k≤ n1+n2+ ...+ n25+1

то правая часть доказываемого неравенства не будет превосходить n1+ n2+ ...+ n25,  что и требовалось.

Пусть для определенности k= a .
    1  Оценим подкоренное выражение в левой части доказываемого неравенства:

                   2            2
a1+ ...+ a25+ 200k ≤(n1+ 2n1)+ ...+ (n25+ 2n25)+ 200k =

= (n2+ ...+ n2)+ 2(n + ...+ n )+ 200(n2+ 2n)
   1       25    1       25      1    1

Квадрат правой части доказываемого неравенства равен

(n21+ ...+ n225)+ 2(n1n2+ n1n3 +...+ n24n25)+ 2(n1+ ...+ n25)+ 1

Сравнивая эти выражения, видим, что достаточно показать, что

100(n21+2n1)≤ n1n2 +n1n3+ ...+ n24n25

Но при любых i<j  верно неравенство ninj >n21 >n1.  При этом в правой части стоит 25⋅224= 300  слагаемых такого вида. Оценивая 100  из них числом n21,  а остальные 200  — числом n1,  получаем требуемое.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное обучение
в Школково

Для детей ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Брянской областей, а также школьникам, находящимся в пунктах временного размещения Крыма обучение на платформе бесплатное.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ или олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!