Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Разделы подтемы Физтех
Подтемы раздела физтех
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#80774

В основании призмы лежит равносторонний треугольник площади 1. Площади её боковых граней равны 3, 3 и 2. Найдите объём призмы.

Источники: Физтех - 2024, 11.7 (см. olymp-online.mipt.ru)

Подсказки к задаче

Подсказка 1

Во-первых, надо осознать картинку. Она, как будто, симметричная, но не стоит так думать сразу. Давайте опустим высоты из точки A_1 на прямые AB, AC, и плоскость ABC. Что тогда можно заметить? Какие принципиально разные случаи есть падения высоты на плоскость ABC?

Подсказка 2

Есть два случая - падение во внутрь призмы и во вне. Однако, при всем этом, у нас расстояния от точки A_1’(основание высоты) до прямых AB и AC равны, в силу равенства прямоугольных треугольников. Как тогда можно равносильно переформулировать случаи, когда высота падает во внутрь, а когда наружу? Как связать это с равноудаленностью от сторон?

Подсказка 3

Все верно, либо точка основания высоты лежит на внешней биссектрисе, либо на внутренней(угла BAC). Давайте посмотрим на второй случай. Мы видим, что прямые AA’ и A_1A’ перпендикулярны BC. Что тогда это значит? Чем это хорошо в нашей картинке?

Подсказка 4

Тем, что тогда BB_1 перпендикулярен BC, а значит BB_1C_1C - прямоугольник. Но тогда, если сторона треугольника в основании равна а, выходит, что a * AA_1 = 2, a * A_1K = 3. Тогда, пришли к противоречию, так как A_1K > AA_1. Значит, остался второй случай. Если прямая внутренней биссектрисы, была перпендикулярна прямой BC, то внешняя биссектриса будет…

Подсказка 5

Параллельна! А тогда, высота в параллелограмме CC_1B_1B - высота призмы. Значит, остается найти C_1H. Ну, а это уже чисто дело техники(и нескольких теорем Пифагора).

Показать ответ и решение

Если бы призма была прямая, то площади боковых граней были бы равны. Значит, призма наклонная.

Обозначим призму ABCA1B1C1,  площади из условия SAA1B1B = SAA1C1C = 3.

Пусть A1K, A1M  — высоты параллелограммов AA1B1B  и AA1C1C.  Тогда A1K = A1M,  т.к. площади равны, а также равны их основания, так как равносторонний треугольник.

Пусть  ′
A — проекция A1  на плоскость ABC.  Тогда  ′     ′
A K = AM,  следовательно, точка равноудалена от прямых AB  и AC.

(a) Рассмотрим случай, когда  ′
A принадлежит биссектрисе AL  угла ∠ABC.  AL  — высота, медиана и биссектриса в равностороннем треугольнике.

PIC

AL ⊥ BC   }                ′
A1A′ ⊥ BC    =⇒   BC ⊥(AA1A )  =⇒  BC ⊥ AA1  =⇒   BC ⊥ BB1

Тогда получаем, что BB1C1C  — прямоугольник. Пусть сторона треугольника ABC  равна a.  Посчитаем площадь прямоугольника и параллелограмма.

S1 =a ⋅AA1, S2 = a⋅A1K

2 =a ⋅AA1, 3= a⋅A1K

Но A1K < AA1,  тогда

3= a⋅A1K < a⋅AA1 = 2

получаем противоречие.

(b) Рассмотрим случай, когда A′ принадлежит внешней биссектрисе AL  угла ∠ABC.

PIC

AA′ ∥BC  )|}
A1A∥BB1     =⇒   (AA1A′) ∥(BB1C )
AA′ ∥BC  |)

Но (AA1A′)⊥(ABC ),  следовательно, (BB1C)⊥ (ABC ),  откуда следует, что высота CH1  параллелограмма CC1B1B  совпадает с высотой призмы (C1H = A1A′).  В итоге

V = SABC ⋅CH1 = 4√3
Ответ:

√43-

Ошибка.
Попробуйте повторить позже

Задача 2#80773

Дана правильная шестиугольная пирамида SABCDEF  (S  — вершина) со стороной основания 2  и боковым ребром 4.  Точка X  лежит на прямой SF,  точка Y  — на прямой AD,  причём отрезок XY  параллелен плоскости SAB  (или лежит в ней). Найдите наименьшую возможную длину отрезка XY.

Источники: Физтех - 2024, 11.7 (см. olymp-online.mipt.ru)

Подсказки к задаче

Подсказка 1

Давайте сначала поймем, где находится отрезок XY. Так как XY параллелен плоскости SAB, попробуем провести через X прямую, параллельную плоскости SAB, такая прямая будет параллельна SA. Пусть эта прямая пересекает AF в точке T.

Подсказка 2

Нас просят найти наименьшее значение. Нужно ввести неизвестную и искать XY через неё. Если принять AT за а, то XT, YT и угол XTY легко посчитать.

Подсказка 3

XT можно найти через подобие, TY из равностороннего треугольника, угол XTK можно найти через подобие тоже.

Подсказка 4

Не забудьте, что T может не попасть на отрезок AF, а может быть больше AF. Нужно рассмотреть 2 случая, чтобы TF не был отрицательным. Также угол XTK выражается по-разному.

Подсказка 5

По теореме косинусов можно выразить XY через а. Осталось только найти наименьшее значение полученного выражения!

Показать ответ и решение

За (ABC )  будем обозначать плоскость, проходящую через точки A  , B  и C.

Возьмем на прямой SC  такую точку Z  , что SZ =SX  . Тогда

XZ ∥FC ∥AB ∥(ABS )

На прямой AF  же возьмём точку T  такую, что XT ∥AS ∥(ABS)  . Получается, что плоскость (XZT )∥ (ABS )  Тогда XY  лежит в плоскости (XZT )  . (XZT )  пересекает плоскость основания по прямой TK  (K ∈ BC  ), параллельной AB.

PIC

Пусть AT = a  . Тогда TF = |2− a| , TX = 2TF =2|2− a| . Треугольник ATY  будет правильным (есть 2 угла по 60∘ ), т.е. TY = AT =a  .

       (
       { ∠SAB =arccos14, a <2
∠XT Y = ( 180∘− ∠SAB = 180∘− arccos1, a> 2,
                               4

т.к. это 2 угла с параллельными сторонами.

Рассматриваем треугольник XT Y  . XY 2 = XT2 +YT 2− 2XT ⋅TY ⋅cos(∠XT Y)  . Подставляем найденные значения.

4(2− a)2+a2− a|2− a|= XY2

Минимум выражения слева достигается при a =− −21⋅68= 1,5  и равно XY2 =2,5  . Тогда min(XY )= √2,5-

Ответ:

 ∘ 5
  2

Ошибка.
Попробуйте повторить позже

Задача 3#80772

Для целых чисел a  , b  , c  известно, что a< b  , b− a  не делится на 3, (a− c)(b− c)  равно квадрату простого числа, наконец,  2
a + b= 1000  . Найдите все такие тройки (a,b,c)  .

Источники: Физтех - 2024, 11.6 (см. olymp-online.mipt.ru)

Подсказки к задаче

Подсказка 1

Во-первых, давайте поймем, что если (a - c)(b - c) = p^2, то у нас есть не так много возможных случаев, так как a - c и b - c - это делители p^2, а их у нас всего +-1,+-p,+-p^2. Значит, у нас всего 6 вариантов. А как можно, используя условие, еще сократить количество вариантов, которые надо перебрать?

Подсказка 2

Можно, используя условие a < b, сказать, что a - c < b - c => у нас есть два варианта: первая скобка равна 1, вторая p^2 или первая равна -p^2, а вторая -1. Хорошо, у нас получилась совокупность систем. Как нам её решить?

Подсказка 3

Во-первых, надо избавиться от c (ни к селу, ни к городу это с) и получить, что a - b = p^2 - 1. При этом, a - b (то есть, p^2 - 1) не кратно 3. Но любой ненулевой остаток квадрата числа дает 1 по модулю 3. Значит, p кратно 3. Что тогда можно сказать про a, b, c? Как меняется наша система?

Подсказка 4

Это значит, что p = 3, а значит, a - b = 8; a^2 + b = 1000. Остаётся решить квадратное уравнение на а, которое получается из этой системы, и найти все с, которые подходят.

Показать ответ и решение

Второе условие можно записать как

            2
(a − c)(b− c)=p , где p — простое число

По условию a< b,  это значит, что a − c< b− c.  Тогда

             2    2     2
(a− c)(b− c)= p = 1⋅p =(−p )(−1)

Следовательно, возможны следующие случаи

{ a − c= 1     { a− c= −p2
  b− c= p2 или   b− c= −1

Из обеих совокупностей можно получить b− a =p2− 1,  из которого можно получить, что p2 − 1  не делится на 3.

Так как p+ 1  и p− 1  не делятся на 3,  а среди последовательных 3  чисел обязательно найдется число, делящееся на 3,  то p  делится на 3. Но p  — простое, значит, p= 3.

Получаем следующую систему

{
  b− a= 8           2
  a2+b =1000   =⇒  a  +a− 992= 0

Из последнего уравнения получаем, что

{
  a= 31  =⇒  b= 39
  a= −32  =⇒  b =− 24

Теперь найдем c

[
  c= a− 1
  c= a+ p2 = a+ 9

Тогда c  может равняться

⌊
|| c= 30
|| c= 40
⌈ c= −23
  c= −33
Ответ:

 (31, 39, 30), (−32, −24, −33), (31, 39, 40),(−32, −24, −23)

Ошибка.
Попробуйте повторить позже

Задача 4#80771

Есть 12  точек, 7  из которых лежат на одной окружности в плоскости α  , а остальные 5 вне α  . Известно, что если четыре точки из всех 12  лежат в одной плоскости, то эта плоскость — α.  Сколько существует выпуклых пирамид с вершинами в этих точках? (Пирамиды считаются различными, если их множества вершин различны.)

Источники: Физтех - 2024, 11.6 (см. olymp-online.mipt.ru)

Подсказки к задаче

Подсказка 1

Среди всех возможных пирамид для нас принципиально различаются два случая: когда вершин 4 (тетраэдр) и больше. Посчитаем их по отдельности и затем сложим.

Подсказка 2

Количество всех возможных тетраэдров - количество способов выбрать 4 вершины, за исключением случаев, когда все точки лежат в одной плоскости. Из условия нам известно, что это возможно только когда все 4 вершины принадлежат плоскости 𝜶.

Подсказка 3

У n-угольной пирамиды, где n≥4 основание лежит в плоскости 𝜶, а вершина вне неё. Отдельно посчитаем способы выбрать основание и умножим на количество вариантов выбора вершин.

Подсказка 4

Количество способов выбрать основание находится как сумма числа сочетаний из 7 от 4 до 7, а вершину пирамиды можно взять пятью разными способами. Тогда нужно просто перемножить их и сложить найденное количество тетраэдров и n-угольных пирамид с n≥4

Показать ответ и решение

Посчитаем отдельно количество тетраэдров и выпуклых n− угольных пирамид с n ≥4.

Количество тетраэдров это количество способов выбрать 4  точки, не лежащих одновременно в одной плоскости. Тогда количество тетраэдров равняется

 4    4
C12− C 7 = 460

Найдем количество выпуклых n− угольных пирамид с n≥ 4.  Основание такой пирамиды лежит в плоскости α,  а вершина — вне α.  Тогда посчитаем количество оснований. Надо просуммировать все способы выбрать от 4 до 7 вершин без учёта порядка

  4   5   6   7  7⋅6⋅5  7⋅6
C 7 +C 7 +C 7 + C7 = 2⋅3 + 2 +7+ 1= 64

Для каждого из посчитанных оснований вершину пирамиды можно выбрать пятью способами, поэтому всего пирамид

5 ⋅64= 320

Итоговый ответ

460 +320= 780
Ответ: 780

Ошибка.
Попробуйте повторить позже

Задача 5#80769

Дан белый клетчатый прямоугольник 100× 400  . Сколькими способами можно покрасить 8 его клеток в чёрный цвет так, чтобы покрашенное множество клеток было симметрично относительно центра прямоугольника либо одной из его “средних линий” прямоугольника (“средней линией” прямоугольника назовём отрезок, соединяющий середины двух его противоположных сторон). Ответ дайте в виде выражения, содержащего не более трёх членов (в них могут входить факториалы, биномиальные коэффициенты).

Источники: Физтех - 2024, 11.5 (см. olymp-online.mipt.ru)

Подсказки к задаче

Подсказка 1

Давайте начнём распутывать клубок симметрий с того, что обозначим за A₁ множество восьмёрок симметричных относительно одной горизонтальной средний линии, за A₂ - вертикальной, за B - относительно центра прямоугольника. Давайте подумаем, сколько нам нужно зафиксировать точек для каждой из симметрий и где, чтобы однозначно восстановить всю восьмёрку?

Подсказка 2

Верно, для A₁ нужны 4 точки не выше (не ниже), чем горизонтальная средняя линия, для A₂ - 4 точки не правее (не левее), чем вертикальная средняя линия, для B - 4 точки в любой одной из указанных ранее областей. Теперь стоит задуматься о том, пересекаются ли данные множества или какая-то комбинация симметрий даёт другую симметрию?

Подсказка 3

Верно, если восьмёрка лежит в любых двух множества A₁, A₂, B, то она лежит во всех трёх, отсюда, вспоминая формулу включений-исключений, мы понимаем, что ответ уже очень близко, осталось только его расписать.

Показать ответ и решение

Назовем восьмеркой набор из 8  клеток. Пусть A
 1  — множество восьмерок, симметричных относительной l
 1  , A
 2  — относительно l
 2  , B  — относительно центра прямоугольника. l1  и l2  это средние линии прямоугольника.

Если выбрать какие-то 4  точки в верхней половине прямоугольника, то остальные точки легко находятся в силу одной из рассматриваемой симметрий относительно l1, l2  и центра прямоугольника. Тогда количество элементов во множествах A1, A2, B  будет одинаковым. Тогда количество элементов в A1  будет равно количеству способов выбрать 4  очки в одной половине фигуры относительно l1.  Остальные 4  точки будут располагаются в другой половине. Тогда количество способов равняется   4
C100⋅200.

Если восьмерка лежит сразу в 2  из 3  множеств A1, A2, B,  то она лежит и в третьей. Это значит, что пересечение двух множеств или пусто, или пересекается с третьим.

Чтобы найти ответ надо найти количество элементов в объединении множеств. Используя формулу включений-исключений, получаем, что

S = |A1∪ A2∪ B|= |A1|+|A2|+|B|− 2|A1∩ A2∩B |,

где |M | — означает количество элементов во множестве M,  S  — искомое число

Если 2  точки, лежащие в одной из четвертей прямоугольника, принадлежат пересечению всех 3  множеств, то легко восстановить исходную восьмерку, удовлетворяющую сразу трем симметриям. Тогда можно посчитать количество элементов в пересечении множеств. Это будет количество способов выбрать 2  точки в одной из четвертей прямоугольника, образованной l1, l2  и центром прямоугольника. Следовательно, количество элементов равняется C2200⋅50.

Тогда посчитаем S

S = |A1 ∪A2 ∪B|= |A1|+ |A2|+ |B|− 2|A1 ∩A2∩ B|=

= 3C420000− 2C210000
Ответ:

 3C4  − 2C2
  20000    10000

Ошибка.
Попробуйте повторить позже

Задача 6#80768

Что больше:

      ( 3π)        (π)     ( π)
5− 4sin  14  или 4cos 7 − 5sin 14  ?

Источники: Физтех - 2024, 11.5 (см. olymp-online.mipt.ru)

Подсказки к задаче

Подсказка 1

Мы видим схожие по структуре аргументы в синусах. Давайте поймём, что если мы сделаем замену на t = pi/14, то у нас получится функция от t, для которой надо доказать, что она всегда больше нуля (или меньше нуля, ведь мы узнаем это только после исследования функции).

Подсказка 2

Тогда, нам нужно исследовать функцию 16sin^3(t) + 8sin^2(t) - 7sin(t) + 1. Видно, что здесь просится замена sint = z. Что тогда можно сказать про этот кубический многочлен после замены и анализа?

Подсказка 3

Верно, можно заметить, что он равен (z + 1)(4z - 1)^2. Значит, при z >= -1(а именно такой синус) наш многочлен больше или равен 0, и в точке sin(pi/14) у нас не достигается равенство(нетрудно проверить). Какой тогда ответ мы получили?

Показать ответ и решение

Пусть t= π-,
   14  тогда требуется сравнить 5 − 4sin 3t  и 4cos2t− 5sint.  Будем сравнивать с 0  их разницу:

                                    3          2
5− 4sin3t− 4 cos2t+5sin t=5 − 4(3sint− 4sin t)− 4(1− 2sin t)+5sint=

      3     2
= 16sin t+8sin t− 7sint+ 1

Пусть sint= z.  Тогда исследуем следующую функцию на отрезке [−1; 1]

f(z)= 16z3 +8z2− 7z +1

Заметим, что f(−1)=0,  значит разделим 16z3+ 8z2− 7z+ 1  на z+ 1.  Тогда получим, что

f(z)=(z+ 1)(16z2 − 8z+ 1)=(z+ 1)(4z− 1)2

Несложно заметить, что f(z)≥0  на [− 1; 1],  причем f(z)= 0  лишь при z = −1  и z = 14.  Тогда f(t)= f(π14)>0.  Значит разность имеет такой же знак, значит первое число больше.

Замечание. Желательно проверить, что sin π14 ⁄= 14.  Это легко делается, так как

sin π-< π-< 3,5-= 1
   14   14  14   4
Ответ:

 5− 4sin(3π)> 4cos(π)− 5sin(π)
       14        7       14

Ошибка.
Попробуйте повторить позже

Задача 7#80767

Две окружности ω
 1  и ω
 2  пересекаются в точках A  и B  , общая касательная касается окружностей ω
 1  и ω
 2  в точках C  и D  соответственно (точка B  лежит ближе к CD  , чем точка A  ). Луч CB  пересекает окружность ω2  в точках B  и E  . Найдите ED :CD  , если диагональ AD  четырехугольника ACDE  делит прямую CE  в отношении 3:10,  считая от вершины C  .

Источники: Физтех - 2024, 11.4 (см. olymp-online.mipt.ru)

Подсказки к задаче

Подсказка 1

Сразу попробуем воспользоваться условием и отметим равные углы. А чему равен угол ACD? Как воспользоваться тем, что CD - касательная?

Подсказка 2

Угол ADC равен AED, а угол ACD равен 180 - ABC. Что полезного можно вывести из этого? Как поближе подобраться к углам треугольника AED?

Подсказка 3

Угол ABE равен углу ACD (почему?). Как воспользоваться вписанностью? Нам было бы очень хорошо, если бы мы понимали, как воспользоваться тем, на какие отрезки AM делит AM...

Подсказка 4

Оказывается, треугольники AED и ADC подобны! Тогда что можно сказать интересного о прямой AM?

Подсказка 5

Это биссектриса угла AEC! Как воспользоваться найденным подобием? Вспоминаем свойство биссектрисы и находим требуемую дробь!

Показать ответ и решение

PIC

Отметим равные углы. ∠ADC = ∠AED,  по свойству угла между касательной и хордой. Градусная мера угла ∠ACD  вдвое меньше дуги AC,  содержащую B,  окружности ω1,  по свойству угла между касательной и хордой. Тогда ∠ABC = 180∘− ∠ACD,  так как градусная мера дуги AC,  не содержащую B  равняется 360∘− 2∠ACD.  Следовательно, ∠ABE = ∠ACD.  Также ∠ACD  =∠ADE,  как вписанные. Из этого следует, что треугольники △AED  и △ADC  подобны. Это значит, что ∠EAD = ∠DAC,  то есть AM  — биссектриса угла ∠EAC.  Запишем соотношения из подобия △AED  и △ADC

                    (   )
ED-= EA-= AD-  =⇒    ED- 2 = EA-
CD   AD   AC         CD      AC

По теореме о биссектрисе AM  получаем

EA   EM    10
AC-= MC- = 3-

Тогда получаем, что

(   )2                            √--
  ED-  = EA-= EM- = 10- =⇒   ED- = √10
  CD     AC   MC    3       CD     3
Ответ:

 √10-:√3

Ошибка.
Попробуйте повторить позже

Задача 8#80766

Диагонали BD  и AC  трапеции ABCD  пересекаются в точке M,  а отношение оснований AD :BC = 1:2.  Точки I
 1  и I
 2  — центры окружностей ω1  и ω2,  вписанных в треугольники BMC  и AMD  соответственно. Прямая, проходящая через точку M,  пересекает   ω1  в точках X  и Y,  а ω2  — в точках Z  и W  (X  и Z  находятся ближе к M  ). Найдите радиус окружности ω1,  если       13-
I1I2 = 2 ,  а MZ  ⋅MY  = 5.

Источники: Физтех - 2024, 11.4 (см. olymp-online.mipt.ru)

Подсказки к задаче

Подсказка 1

Треугольники △AMD и △CMB подобны с коэффициентом 1/2, поэтому все соответствующие элементы относятся как 1/2. Нам дано произведение MZ*MY, которое напоминает произведение секущей на внешнюю часть. Но ведь мы знаем, что MZ/MX=1/2, поэтому легко находим MX*MY=10. А чему там равняется произведение секущей на внешнюю часть?

Подсказка 2

Конечно, квадрату отрезка касательной! Давайте отметим точку касания T: окружности ω₁ c отрезком BM. Тогда MT=√10. Если бы мы еще нашли MI₁, всё было бы в шоколаде...

Подсказка 3

Мы знаем, что MI₁/MI₂=2 и при этом MI₁+MI₂=13/2. Тогда MI₁=13/3. Воспользуйтесь теоремой Пифагора и завершите решение!

Показать ответ и решение

PIC

Пусть центр окружностей ω1  и ω2  это I1  и I2  соответственно. Пусть точка T  — точка касания ω1  на BM.  Тогда

MT 2 = MX ⋅MY
(1)

Рассмотрим треугольники △AMD  и △BMC.  Они подобны с коэффициентом 1.
2  Из этого следует, что MZ = 1MX,
     2  как соответственные элементы в подобных треугольниках. Тогда

         1
MZ ⋅MY = 2MX  ⋅MY

Используя (1)  , получаем

         1   2   1   2    2
MZ ⋅MY  =2 MT  = 2(MI 1 − TI1)

Пусть радиус ω2  это r,  тогда радиус ω2  это 2r.  Тогда нужно найти 2r.  Рассмотрим △MT  I1

         1   2    2
MZ ⋅MY = 2(MI1 +4r )

Из подобия △AMD  и △BMC  получаем , что MI1 = 2MI2,  из этого следует, что

     2
MI1 = 3I1I2

Тогда

          (         )
MZ ⋅MY = 12  49I1I22 − 4r2

     (          )
5= 1  4 ⋅ 169-− 4r2
   2  9  4

 2   169      79           √79
4r = 9--− 10=-9  =⇒   2r= -3-
Ответ:

 √79
  3

Ошибка.
Попробуйте повторить позже

Задача 9#80765

Найдите все значения параметра p  , при которых уравнение

pcos3x+ 3(p +4)cosx =6cos2x+ 10

имеет хотя бы одно решение. Решите это уравнение при всех таких p.

Источники: Физтех - 2024, 11.3 (см. olymp-online.mipt.ru)

Подсказки к задаче

Подсказка 1

Мы видим, что все каждый множитель переменный, выражается через cosx. Давайте сделаем замену и попробуем как-то преобразовать полученное кубическое уравнение. На что оно похоже? А если посмотреть на утроенный коэффициенты перед квадратом и иксом?

Подсказка 2

Верно, это похоже на куб разности. Тогда можно преобразовать как (1 - cosx)^3 = (cosx*(p - 1)^1/3)^3. Значит, получаем уравнение на cosx, линейное. Остается понять, делали ли мы равносильные переходы и когда существует решение такого уравнения на х и записать ответ.

Показать ответ и решение

     3                             2
p(4cos x− 3cosx)+ 3pcosx+ 12cosx − 6(2cos x− 1)− 10= 0

    3       2
4pcos x− 12cos x+ 12cosx − 4= 0

pcos3x − 3cos2x+ 3cosx− 1= 0

(p− 1)cos3x+ (cos3x − 3cos2+3cosx − 1)= 0

             ----
(1 − cosx)3 = (3∘ p− 1cosx)3

        ∘ ----
1− cosx=  3p− 1cosx

Заметим, что cosx⁄= 0,  тогда из последнего уравнения получаем, что

         1
cosx= 1+-3√p-− 1

Решением является

x= ±arccos---√1----+2πk, k ∈ℤ
         1+ 3 p− 1

при

    ----1---
−1≤ 1+ 3√p-− 1 ≤1

[    3√----
  1+ 3√p−-1≥ 1
  1+  p− 1≤ −1

[
  p ≥1
  p ≤− 7
Ответ:

Если p ≥1  или p≤ −7,  то x =± arccos --1√---+2πk, k ∈ℤ,
          1+ 3p− 1

при других p  решений нет.

Ошибка.
Попробуйте повторить позже

Задача 10#80764

Из множества M,  состоящего из семи подряд идущих натуральных чисел, выбираются шестёрки попарно различных чисел такие, что сумма чисел в каждой из шестёрок — простое число. Пусть p  и q  — две из таких сумм. Найдите множество M  , если  2   2
p − q = 792.

Источники: Физтех - 2024, 11.4 (см. olymp-online.mipt.ru)

Подсказки к задаче

Подсказка 1

Давайте скажем, что первое число - это а и поймем, чему равна сумма во всех шестерках и какие из них могут быть простыми, а какие нет.

Подсказка 2

Тогда у нас получаются суммы шестерок - это числа от 6a + 15, до 6a + 21. Из за делимости на 2 или 3, подходят только числа 6a + 19 и 6a + 17. А это значит, что это ровно наши числа p и q. Остается решить квадратное уравнение на а и найти ответ(подставить значения p и q в равенство).

Показать ответ и решение

Пусть a  — наименьшее натуральное число из M.  Тогда

M = {a, a+ 1,a+ 2,...,a +6}

Сумма всех 7  чисел равна

                    6⋅7
7a+ 1+ 2+ ...+6 =7a+  2  =7a+ 21

Переберем сумму шестёрок чисел:

                     .
6a+21 не подходит, так как.. 3
                     ..
6a+20 не подходит, так как. 2
6a+19 нет противоречий
6a+18 не подходит, так как ... 3
6a+17 нет противоречий
                     ..
6a+16 не подходит, так как. 2
6a+15 не подходит, так как ... 3

Тогда, p= 6a+ 19, q =6a+ 17.  По условию задачи p2 − q2 = 792  или то же самое, что и

       2        2
(6a+19) − (6a+ 17) = 792 =⇒  2(12a+ 36)=792

2(a+ 3)=396  =⇒   a+3 =33  =⇒   a= 30

Следовательно, M  может быть только множеством

{30, 31, 32, 33, 34, 35, 36}

Проверка: 6a +19= 199  — простое, 6a+ 17= 197  — простое.

Ответ:

 {30, 31, 32, 33, 34, 35, 36}

Ошибка.
Попробуйте повторить позже

Задача 11#80763

Решите систему уравнений

{  √x+-3− √4−-x−-z+5 =2∘y-+-x−-x2-+z;
   |y+ 1|+ 3|y − 12|=√169-− z2.

Источники: Физтех - 2024, 11.2 (см. olymp-online.mipt.ru)

Подсказки к задаче

Подсказка 1

Первое уравнение выглядит не очень приятным, так что попробуем разобраться со вторым уравнением. Тут у нас ограниченный корень и сумма модулей. Чем можно воспользоваться?

Подсказка 2

Правильно, оценкой. Аккуратно оценим обе части уравнения и подумаем при каких условиях достигается равенство.

Подсказка 3

Отлично, у нас получилась единственная пара (y,z), которую можно подставить в первое уравнение и найти x.

Подсказка 4

Чтобы не возводить в много раз в квадрат уравнение, сделаем замену корней на a и b. Тогда можно записать систему и найти x.

Показать ответ и решение

Рассмотрим второе уравнение системы. Правая часть не больше 13, так как

∘------2  √---
 169− z ≤  169=13

Попробуем оценить левую часть второго уравнения. Рассмотрим |y+ 1|+ |y − 12|,  которое не меньше 13,  так как |a|+|b|≥ a+ b,  где a =y+ 1, b= 12− y.  В итоге имеем

|y+ 1|+|y− 12|≥ 13

Прибавим к последнему неравенству 2|y− 12|,  тогда получим

|y+1|+ 3|y− 12|≥ 13+ 2|y− 12|

Из последнего выражения делаем вывод, что левая часть второго уравнения системы не меньше 13.  В итоге, получили, что левая часть не меньше 13,  а правая часть не больше 13.  Следовательно, чтобы достигалось равенство необходимо, чтобы y = 12, z = 0.  Подставим полученные значения y  и z  в первое уравнения системы для нахождения x.

√x+-3− √4−-x−-0+ 5= 2∘12-+-x−-x2+0

                    ----------
√x-+-3− √4-−-x+5 − 2∘ (x +3)(4− x)= 0

Сделаем замену

{    √ ----
  a =√-x+-3, a≥ 0,
  b=  4 − x, b ≥0

Заметим, что  2  2
a + b =7.  Запишем систему

{
  a−2 b+25− 2ab= 0
  a + b =7

(|     b−-5-
||{  a= 1− 2b
||  (     )2
|(   1b−− 52b + b2 =74x4− 4x3− 26x2+18x+ 18

  4   3    2
4b-− 4b-−-26b-+2-18b-+18= 0
       (1 − 2b)

Рассмотрим, когда числитель становится равным 0

4b4− 4b3− 26b2+18b+ 18 =0 ⇐ ⇒  2(b2+b− 3)(2b2− 4b− 3)=0

Из последнего уравнения получаем совокупность решений

         √--
⌊ b= −1±--13-
||       2
|⌈    2± √10
  b= --2---

С учетом ограничений получаем следующие b

⌊        √--
  b= −1+--13-
|||       2
⌈    2+-√10
  b=   2

Тогда сделаем обратную замену

⌊         √--
  √4-− x-=-13−-1
|||           2
⌈ √ ----  2+√10-
    4− x =  2

⌊          √--     √--
| x= 4− 7−2-13= 1+-213
||⌈           √--      √--
  x= 4− 7+-2-10= 1−-2-10
           2        2
Ответ:

 1+-√13       1− 2√10
(   2  ;12;0), (  2   ;12;0)

Ошибка.
Попробуйте повторить позже

Задача 12#80762

Для целых чисел x  , y  , z  известно, что x ln16+ yln8 +zln24= ln6  . Найдите наименьшую возможную сумму x2+ y2+ z2  .

Источники: Физтех - 2024, 11.2 (см. olymp-online.mipt.ru)

Подсказки к задаче

Подсказка 1

Давайте подумаем. У нас есть сумма произведений каких-то констант на х, y, z. При этом, нам надо максимизировать x^2 + y^2 + z^2. Какое неравенство нам это напоминает? Что первым приходит в голову здесь?

Подсказка 2

Конечно же, неравенство КБШ! Тогда, по этому неравенству у нас выходит, что ((ln16)^2 + (ln8)^2 + (ln24)^2)(x^2 + y^2 + z^2) >= (ln6)^2. Тогда, выходит, что мы получили оценку на минимум нашей суммы. Достигается ли в КБШ равенство, если да, то когда?

Показать ответ и решение

xln16+y ln8+ zln24=ln6

4x ln2+ 3yln 2+z(3ln2 +ln3)= ln2+ ln 3

(4x+ 3y+3z− 1)ln2+ (z− 1)ln3= 0

ln(24x+3y+3z−1⋅3z−1)= 0

24x+3y+3z− 1⋅3z−1 = 1

Так x, y, z ∈ℤ,  то из последнего уравнения вида a  b
2 ⋅3 = 1; a, b∈ Z  получаем a =0,b= 0  , то есть следующую систему:

{
  4x+ 3y +3z = 1  ⇔   4x+3y =−2  ⇔   y = −x − x-+2
  z = 1                                      3

Поскольку x, y ∈ ℤ,  то x+2 =k ∈ℤ,  =⇒  y =2− 3k− k= −4k+ 2.
 3  С учётом равенств z = 1, x= 3k− 2, y = 2− 4k  запишем  2   2  2
x + y + z :

 2   2  2       2              2         2
x + y +z = 1+ 9k +4 − 12k+ 4+16k − 16k =25k − 28k+ 9

 2   2  2     2
x + y +z = 25k − 28k+ 9→ min

Чтобы найти минимум, найдем координаты вершины параболы 25k2− 28k+9,  ветви которой направлены вверх, значит минимум достигается в вершине.

       -28-  14
kверш. = 2⋅25 = 25

Так как парабола симметрична относительно вершины, то минимальное целое значение будет достигаться при k= 1.  Тогда искомое значение равняется

x2+ y2+ z2 =1 +4+ 1= 6
Ответ: 6

Ошибка.
Попробуйте повторить позже

Задача 13#80755

Найдите все действительные значения x,  при каждом из которых существует геометрическая прогрессия, состоящая из действительных чисел и такая, что её четвёртый член равен ∘ 15x+6-
  (x−3)3,  десятый член равен x+ 4,  а двенадцатый член равен ∘ ------------
  (15x+ 6)(x− 3).

Источники: Физтех - 2024, 11.1 (см. olymp-online.mipt.ru)

Подсказки к задаче

Подсказка 1

Если нам даны какие это конкретно члены прогрессии, то давайте просто запишем чему они равны через знаменатель прогрессии и первый член. При этом, хотелось бы в таком случае получить равенство на х, ведь тогда мы получим уравнение на 1 переменную, а не на 3. Какое равенство можно написать, используя 4, 10 и 12 член геометрической прогрессии?

Подсказка 2

К примеру, можно написать вот такое равенство: (bq^9)^4 = (bq^11)^3*(bq^3). Значит, получили уравнение на х, так как и 4, и 10, и 12 член выражены только через х. Осталось преобразовать уравнение к виду (15x + 6)^2 = (x + 4)^4 , разложить на сумму квадратов и получить ответ.

Показать ответ и решение

Пусть первый член прогрессии это b,  а знаменатель прогрессии это q.  Тогда запишем систему, исходя из условий задачи

(|     ∘ 15x+-6-
||||{ bq3 =  (x−-3)3

||||| bq9 =x∘+4-----------
( bq11 =  (15x+ 6)(x− 3)

Заметим, что (bq9)4 =(bq11)3⋅(bq3).  Запишем это равенство через x  :

                 ∘-------
(∘ (15x+-6)(x−-3))3⋅  15x-+6-= (x +4)4
                   (x − 3)3

      2       4       2          2
(15x+ 6) =(x+ 4)  ⇔   (x  − 7x+ 10)(x +23x+ 22)=0

Из последнего уравнения получаем следующую совокупность решений

⌊ x= −22— не подходит, так как bq9 и bq11 разных знаков
|| x= −1
|| x= 2— не подходит под ОД З
⌈ x= 5

В итоге, получаем, что x =− 1  или x =5  .

Ответ:

 {−1; 5}

Ошибка.
Попробуйте повторить позже

Задача 14#80754

Углы выпуклого многоугольника образуют арифметическую прогрессию, имеющую разность 2∘ и начинающуюся с угла 143∘.  Какое наибольшее число вершин может быть у такого многоугольника?

Источники: Физтех - 2024, 11.1 (см. olymp-online.mipt.ru)

Подсказки к задаче

Подсказка 1

Вспомним формулу для подсчета суммы углов у правильного многоугольника и формулу суммы арифметической прогрессии.

Подсказка 2

Приравняв эти суммы, сможем получить квадратное уравнение. Но точно ли все значения этого уравнения подойдут?

Показать ответ и решение

Пусть n  — искомое число вершин. Тогда сумма углов многоугольника равна 180∘⋅(n− 2).  С другой стороны, эту же сумму можно выразить через сумму арифметической прогрессии, которая равна    ∘    n(n−1)  ∘
143 ⋅n+   2  ⋅2 .  Приравняем эти суммы и получим следующее уравнение:

   ∘          ∘     n(n − 1) ∘
180 ⋅(n − 2)= 143 ⋅n +--2---⋅2

n2− n+ 143n − 180n+ 360= 0

 2
n − 38n+ 360= 0

Получаем, что n= 18  или n= 20.  Но n =20  не подходит, так как тогда наибольший угол многоугольника равен 143∘+2∘⋅19= 181∘,  что больше 180∘.

Ответ: 18

Ошибка.
Попробуйте повторить позже

Задача 15#78776

Сколько существует троек целых чисел (a;b;c)  таких, что они образуют в указанном порядке геометрическую прогрессию, а их произведение abc  равно  150 150
2   ⋅3  ?

Подсказки к задаче

Подсказка 1

Для начала поймём, а какого вообще вида числа нам подходят? И какие условия на них накладываются?

Подсказка 2

Верно, каждое число при разложении на простые должно представляться в виде: 2ⁿ¹*3ⁿ². И при этом сумма степеней двоек всех трёх чисел должна быть равна 150 и аналогично с тройками! А теперь вспомним условие про геометрическую прогрессию, что можно сказать про число b?

Подсказка 3

Да, b вне зависимости от a и c равно 2⁵⁰*3⁵⁰(это получается из того, что степень b равна полусумме степеней a и c). А что в таком случае можно сказать про a и c?

Подсказка 4

Верно, степень двойки у чисел a и c можно выбрать 101 способом, так как при выборе степени двойки у a — степень c восстанавливается однозначно! И аналогично, для степеней тройки. Получается, что всего таких чисел 101². Но вот, все ли случаи мы учли?

Подсказка 5

Верно, a и c могут быть также отрицательными, тогда просто знаменатель прогрессии поменяется на противоположный!

Показать ответ и решение

Найдём сначала количество троек натуральных чисел. Пусть

    x  y      x  y      x  y
a= 2 1 ⋅31, b= 22 ⋅3 2, c= 2 3 ⋅33

где xi, yi  — целые неотрицательные числа. Тогда получаем

{ x1+ x2+ x3 =150
  y1+ y2+y3 = 150

Числа a,b,c  составляют в указанном порядке геометрическую прогрессию тогда и только тогда, когда b2 =a ⋅c  , откуда

{ 2x2 = x1+x3
  2y2 = y1+ y3

Из полученных уравнений получаем систему

(| x2 = y2 = 50
{ x1+ x3 = 100
|( y1+ y3 =100

Посчитаем количество решений этой системы. Есть 101  способ выбрать пару чисел (x1;x3)  . Действительно, x1  можно взять любым целым числом из отрезка [0;100]  , после чего x3  определяется однозначно. Аналогично, пару (y1;y3)  можно выбрать 101  способом. Перемножая, получаем 1012 = 10201  способ.

Если рассматривать также отрицательные значения переменных, то можно заметить, что подходят все тройки чисел вида (− a;b;−c)  , где a,b,c  положительны и составляют геометрическую прогрессию. Таких троек ровно столько, сколько и в первом случае, поэтому окончательно имеем 20402  тройки.

Ответ: 20402

Ошибка.
Попробуйте повторить позже

Задача 16#78774

На координатной плоскости нарисован квадрат, все вершины которого лежат на графике функции y = x3− ax  . Известно, что одна из диагоналей квадрата лежит на прямой y = −4x  , а центр совпадает с началом координат. Найдите значение параметра a  и площадь квадрата.

Источники: Физтех-2023, 11.4 (см. olymp-online.mipt.ru)

Подсказки к задаче

Подсказка 1

Во-первых, давайте заметим, что наша функция нечётная, а потому она центрально-симметрична. Если одна диагональ имеет угол наклона -4, а диагонали перпендикулярны, то какой угол наклона имеет другая диагональ?

Подсказка 2

Верно, с тангенсом 1/4. Если x₀ — абсцисса точки B, которая лежит в 4-ой четверти, то её ордината имеет значение -4x₀. При этом у точки квадрата, которая лежит в первой четверти, то её координаты это (4x₀, x₀). Что даёт нам тот факт, что мы знаем, что две точки лежат на графике x³ + ax? Что это значит для поиска площади?

Подсказка 3

Значит, можно подставить эти два значения в уравнение графика и поскольку точки принадлежат графику, то и подставив значения, мы получим равенство. Откуда можно найти и а, и х₀. А найти диагональ (чтобы найти площадь) совсем нетрудно, если мы знаем про нечётность функции (про симметричность координат противоположных точек)

Показать ответ и решение

Пусть A  и B  — вершины квадрата, лежащие в первой и четвёртой четвертях соответственно; O  — начало координат.

PIC

По условию точка B  лежит на прямой y = −4x  . Если x0  — абсцисса точки B  , то x0 >0  , а координаты точки B  — это (x0;−4x0) . Так как точка A  получается из B  поворотом на 90∘ против часовой стрелки вокруг точки O,  то её координаты (4x0;x0) . Поскольку обе точки лежат на графике y =x3− ax  , получаем и решаем систему уравнений (учитываем, что x0 ⁄= 0  )

{
   −4x0 = x30− ax0
   x0 = 64x30− 4ax0

{
  a= x20+ 4
  4a= 64x20 − 1

{     2
  a= x0+ 4
  4x20+16= 64x20− 1

{
  x20 = 1670
  a= 25607

Пусть OA= d  — половина диагонали квадрата. Тогда

OA2 =(4x0)2+ x20 = 17x20

Площадь квадрата S  равна полупроизведению его диагоналей, то есть

S = 1⋅2d⋅2d= 2d2 = 289
   2             30
Ответ:

 a = 257; S = 289
    60     30

Ошибка.
Попробуйте повторить позже

Задача 17#67591

Дана треугольная пирамида SABC,  медианы AA ,BB
  1   1  и CC
   1  треугольника ABC  пересекаются в точке M.  Сфера Ω  касается ребра AS  в точке L  и касается плоскости основания пирамиды в точке K,  лежащей на отрезке AM.  Сфера Ω  пересекает отрезок SM  в точках P  и Q.  Известно, что SP = MQ,  площадь треугольника ABC  равна 90,SA= BC = 12.

а) Найдите произведение длин медиан AA1,BB1  и CC1.

б) Найдите двугранный угол при ребре BC  пирамиды, если дополнительно известно, что Ω  касается грани BCS  в точке N,SN = 4,  а радиус сферы Ω  равен 5.

Источники: Физтех-2023, 11.7 (см. olymp-online.mipt.ru)

Подсказки к задаче

Пункт а), подсказка 1

Давайте просто начнём хоть что-нибудь делать в задаче и в дальнейшем посмотрим, что из этого получится. У нас есть касание со сферой и секущая. Какой тогда факт связанный со сферой можно сразу заметить?

Пункт а), подсказка 2

Верно, можем записать два выражения по теореме о касательной и секущей. Какую тогда пару равенств отрезков мы получаем?

Пункт а), подсказка 3

Точно, тогда у нас равны произведения в соотношениях, откуда равны SL и MK, а также AM и SA. Но мы знаем, что SA=12 и BC=12. Давайте не будем забывать, что у нас проведены медианы в основании треугольника. Какие тогда ещё отрезки можно найти и какой сделать вывод про треугольник BMC?

Пункт а), подсказка 4

Верно, MA₁=6 по свойству точки пересечения медиан. Но тогда MA₁=BA₁=CA₁=6, и треугольник BMC прямоугольный. Далее, зная площадь треугольника ABC, найти произведение двух оставшихся медиан несложно, так как катеты и будут частями исходных медиан.

Пункт б), подсказка 1

Раз нам нужен двухгранный угол, нужно его сначала построить. Из какой тогда точки удобнее всего опустить перпендикуляр на ребро BC для достижения цели?

Пункт б), подсказка 2

Верно, опустим перпендикуляр KH из точки K. Но тогда, применяя несколько раз теорему о трёх перпендикулярах, получаем, что NH ⊥ BC. Значит нам нужно искать ∠NHK. Но из-за равенства двух прямоугольных треугольников, ∠NHK = 2∠OHK, где O — центр сферы. Чтобы найти угол, скорее всего, надо будет найти сторону прямоугольного треугольника. Но её мы пока не знаем... Какой дополнительное построение тогда можно сделать, где нам что-то известно?

Пункт б), подсказка 3

Верно, давайте проведём ещё высоту в треугольнике BMC, которую мы можем найти. А также у нас два треугольника подобны. Осталось только до конца воспользоваться равенством касательных к сфере, после чего найти неизвестный катет, и, следовательно, двухгранный угол.

Показать ответ и решение

а)

PIC

Поскольку SL  — касательная к сфере Ω,  а SP  и SQ  — секущие к ней, то по теореме о касательной и секущей

  2
SL = SP ⋅SQ

Аналогично,

   2
MK  = MP ⋅MQ

А поскольку MQ  = SP,  то

SP ⋅SQ = MP ⋅MQ

В итоге получаем

SL2 =SP ⋅SQ =MP  ⋅MQ = MK2 ⇒ SL =MK

Так как AL = AK  как касательные к сфере Ω,  проведённые из точки A,  то

AM = AK +MK  = AL+ SL =SA = 12

А поскольку медианы треугольника точкой пересечения делятся в отношении 2 :1  считая от вершины, то

     3
AA1 = 2AM = 18

Кроме того,

A1M  = AM = 6
        2

При этом

A1B =A1C = BC-= 6,
            2

то есть

A1M = A1B = A1C

Отсюда △BMC  прямоугольный и ∠BMC  =90∘.  Далее имеем

SBMC = SABC-= 1 ⋅BM  ⋅CM = 1⋅ 2BB1-⋅ 2CC1-⇒ BB1 ⋅CC1 = 3SABC =135
         3    2           2   3     3              2

Значит,

AA1 ⋅BB1 ⋅CC1 =18⋅135= 2430

б)

PIC

Пусть G  и H  — проекции точек M  и K  на прямую BC  соответственно. Заметим, что NH  ⊥BC,  потому что N  и K  — точки касания сферы Ω  со сторонами двугранного угла пирамиды при ребре BC.  Поэтому искомый угол равен

∠NHK  = 2∠OHK,

где O  — центр сферы Ω.

Далее имеем

       SABC-  1                2SABC-
SBMC =   3  = 2 ⋅BC ⋅MG ⇒ MG =  3BC   =5

Так как SL =SN = 4  как касательные к Ω,  то

AK = AL =SA − SL= 8

Отсюда получаем

A1K =AA1 − AK = 10

Из подобия △A1MG  и △A1KH  имеем

KH = MG ⋅ A1K = 25
         A1M    3

Окончательно,

tg∠OHK  = OK-= 3 ⇒ ∠NHK  =2∠OHK  = 2arctg 3
          KH   5                        5
Ответ:

a) 2430

б)      3
2arctg 5

Ошибка.
Попробуйте повторить позже

Задача 18#67590

На координатной плоскости дан параллелограмм с вершинами в точках O(0;0)  , P (− 14;42),Q(6;42)  и R(20;0).  Найдите количество пар точек A(x1;y1)  и B(x2;y2)  с целыми координатами, лежащих в этом параллелограмме (возможно, на границе) и таких, что 3x2− 3x1 +y2− y1 = 33.

Источники: Физтех-2023, 11.6 (см. olymp-online.mipt.ru)

Подсказки к задаче

Подсказка 1

Сначала может показаться, что задача какая-то жуть. Нужно находить количество пар точек, подходящие под какое-то странное условие... Но давайте понемногу "причёсывать" задачу и понимать, что от нас хотят. Попробуем хорошо преобразовать условие, данное на точки A и B. Какое действие хочется сделать, увидев в одной части координаты и точки A, и точки B?

Подсказка 2

Да, давайте перенесём координаты A в правую часть, а точки B — в левую. Число 33 тоже перенесём влево. Так как координаты у нас целые, то слева и справа получаются тоже какие-то целые значения. Пусть это будет целое число k. Что же теперь означает наше условие на координаты после того, как мы переписали их в удобном виде?

Подсказка 3

Верно, это две параллельные прямые, где вместо x и y мы подставляем координаты точек A и B. То есть мы можем записать уравнение прямых в общем виде с k. Что же нам теперь нужно сделать? Не забудем, что у нас есть ограничение на прямые самой границей параллелограмма. Идейная часть закончилась, теперь уже можно реализовывать техническую часть решения. Вспоминая вопрос задачи, что нам нужно теперь найти?

Подсказка 4

Верно, нам нужно найти в принципе количество целых точек x на прямых вида y=-3x+b. Это с помощью рассмотрения случаев, когда b делится на 3 и не делится, решается несложно(учитывая, конечно, снова ограничение по параллелограмму). Найдя уже до этого ограничения на k, остаётся только дело за комбинаторикой. То есть нам нужно для каждого k, выбрать на прямых нужные нам целые точки.

Показать ответ и решение

Запишем исходное условие на координаты точек A(x ;y)
   1 1  и B(x;y )
   2 2  в виде

3x2+ y2− 33 =3x1+ y1

Так как координаты точек A(x1;y1)  и B(x2;y2)  являются целыми числами, то левая и правая части этого равенства могут принимать только целочисленные значения                             k.  Пара точек A(x1;y1)  и B(x2;y2)  с целочисленными координатами удовлетворяет условию тогда и только тогда, когда они лежат на параллельных прямых

y = −3x+ k и y = −3x+ k+ 33

соответственно. Найдём подходящие значения параметра k.

Стороны OP  и QR  параллелограмма лежат на прямых

y =− 3x и y =− 3x+60,

поэтому они параллельны прямым, на которых лежат точки A (x1;y1)  и B(x2;y2).  Эти прямые пересекают параллелограмм при

(
{  0≤ k≤ 60
(               ⇔ k∈[0;27]
   0≤ k+ 33 ≤60

Выясним количество точек с целочисленными координатами на каждой из прямых вида

y = −3x+ b

Рассмотрим несколько вариантов:

1)  Если b  кратно трём (т.е. b= 3l),  то получаем прямую

y = 3(−x +l)

При любом целом x  получится целое значение y,  а чтобы точка оказалась в параллелограмме нужно, чтобы

0≤ y ≤42 ⇔ l− 14≤ x≤ l

При любом l  этому неравенству удовлетворяет 15  целых значений x.

2)  Если b  не делится на 3, т.е. при b= 3l+ γ,  где γ ∈ {1;2},  имеем

0≤ −3x+ 3l+γ ≤42⇔ l+ γ − 14≤ x≤ l+ γ
                     3            3

Учитывая, что x∈ ℤ,  получаем

l− 13≤ x≤ l

Значит, этому неравенству удовлетворяет 14  целочисленных значений.

Если k= 3l  (таких значений 10),  то на каждой из двух прямых

y = −3x+ k и y = −3x+ k+ 33

можно выбрать по 15  точек — всего 10 ⋅15⋅15= 2250  пар.

Если k⁄= 3l  (таких значений 18),  то на каждой из двух прямых можно выбрать по 14  точек — имеем 18⋅14⋅14= 3528  пар.

Итого получаем 2250 +3528= 5778.

Ответ: 5778

Ошибка.
Попробуйте повторить позже

Задача 19#67589

Некоторые числа x  и y  удовлетворяют равенствам

  4
log3x +6logx 3= logx2 243− 8

  4                  (11)
log3(5y)+2log5y3 =log25y23   − 8

Найдите все возможные значения произведения xy.

Источники: Физтех-2023, 11.5 (см. olymp-online.mipt.ru)

Подсказки к задаче

Подсказка 1

Сразу видно, что логарифмы связаны между собой, что можно сделать для дальнейшего удобства?

Подсказка 2

Сделать замены! Введем 2 переменные (для каждого из равенств) и запишем условие с учётом замены. Получится 2 уравнения 4 степени, от которых можно равносильно перейти к уравнениям 5ой степени. Корни совсем неочевидны, да и, казалось, нам необязательно искать их точно - достаточно найти какую-то связь между переменными, чтобы ответить на вопрос задачи) Что нам помогает при исследовании корней уравнения больших степеней?

Подсказка 3

Производная! С помощью неё можно, к примеру, что-то узнать про количество корней уравнения. Помним, что уравнение нечетной степени имеет не менее одного корня. Что тогда можно сказать про корни уравнений?

Подсказка 4

Производные положительны, уравнение нечетной степени, значит уравнения имеют ровно по одному корню! Замечаем связь между коэффициентами уравнений. Что тогда можно сказать про корни?

Подсказка 5

Корни противоположны! Остаётся лишь сделать обратную замену, из которой xy находится несложно!

Показать ответ и решение

Обозначим logx =u
  3  , log (5y)= v.
  3  Так как

       -1--- 1
logx3 = log3x = u,

logx2243= 5logx3 = 5-,
         2       2u

log5y3= ---1-- =-1,
       log3(5y)  v

       11   11       11
log25y2(3 )=  2 log5y3 =2v,

то исходные уравнения можно записать в виде

(                      (
{ u4+ 6u = 52u-− 8        { 2u5+ 16u+ 7= 0
( v4+ 2 = 11-− 8   ⇐⇒   ( 2v5+16v− 7= 0
      v   2v

Рассмотрим первое уравнение системы. Возьмём производную от левой части, получим

(2u5+ 16u +7)′ = 10u4+ 16> 0

Т.е. в левой части стоит возрастающая функция, а в правой части число, поэтому уравнение имеет не более одного решения. С другой стороны, любой многочлен нечётной степени имеет по крайней мере один действительный корень. Отсюда следует, что уравнение имеет ровно одно решение.

Аналогично рассмотрим второе уравнение:

(2v5+ 16v − 7)′ = 10v4+ 16> 0

Значит, аналогично с первым уравнением, второе уравнение имеет ровно одно решение. Если во втором уравнении сделать замену v =− w,  то оно принимает вид

−2w5− 16w− 7= 0  ⇐⇒   2w5 +16w +7 =0

Это эквивалентно первому уравнению. Это означает, что корни уравнений противоположны, следовательно, их сумма равна нулю. Тогда

u+ v = 0 ⇐⇒   log3x+ log3(5y)= 0 ⇐ ⇒   log3(5xy)=0

5xy =1  ⇐ ⇒  xy = 15
Ответ:

 1
5

Ошибка.
Попробуйте повторить позже

Задача 20#67588

Найдите все значения параметра a,  для каждого из которых найдётся значение параметра b,  при котором система уравнений

{ ax+ 2y− 3b= 0
  (x2+ y2 − 9)(x2+y2− 12x+ 32)= 0

имеет ровно 4 решения.

Источники: Физтех-2023, 11.3 (см. olymp-online.mipt.ru)

Подсказки к задаче

Подсказка 1

А что интересное мы видим? Правильно, во втором уравнении нет параметров! Поэтому давайте рассмотрим пока только его, возможно, получится что-то хорошее!

Подсказка 2

Да, это уравнение задаёт две окружности! Первая с центром (0;0) и радиусом 3, а вторая с центром (6;0) и радиусом 2. Так, а теперь, когда из второго уравнения мы получили всё что могли, нужно возвращаться к первому уравнению системы и думать, что делать с ним!

Подсказка 3

Конечно, поскольку окружности построены в осях X и Y, то из первого уравнения хочется выразить y и построить прямую! То есть, мы получим: y = -ax/2 + 3b/2. Изобразим эту прямую на графике, тогда в каком случае у нас будет 4 решения?

Подсказка 4

Верно, 4 решения будет тогда и только тогда, когда прямая пересекает каждую из двух окружностей! А какой случай полезно было бы рассмотреть, чтобы проще найти все значения параметра a?

Подсказка 5

Да, нужно провести общую внутреннюю касательную(мы говорим именно про внутреннюю касательную, потому что только в этом случае окружности будут лежать по разные стороны от прямой)! Поскольку b отвечает только за параллельный перенос прямой, то мы делаем вывод: чтобы система могла иметь 4 решения, угловой коэффициент получившейся прямой должен быть по модулю меньше, чем угловой коэффициент общей касательной! А как найти угловой коэффициент внутренней касательной?

Подсказка 6

Да, перенесем нашу касательную в начало координат! Тогда у образовавшегося прямоугольного треугольника мы знаем гипотенузу и катет, то есть легко можем найти второй катет! А дальше вспомним, что коэффициент наклона – это тангенс угла! Осталось найти тангенс и понять, когда |-a/2| меньше чем этот тангенс!

Показать ответ и решение

Рассмотрим второе уравнение системы отдельно:

(2   2  )( 2   2        )
x + y − 9 x + y − 12x+ 32 = 0

{ x2+y2 − 9= 0
  x2+y2 − 12x+ 32 =0

{ x2+ y2 =9
  (x − 6)2+ y2 =4

Видим, оно задаёт две непересекающиеся окружности Ω  и ω  — с центрами в точках O(0;0)  и Q(6;0)  и радиусами 3  и 2  соответственно.

Теперь рассмотрим первое уравнение системы:

ax+ 2y− 3b= 0⇔ y =− ax+ 3b
                   2    2

Видим, оно определяет прямую с угловым коэффициентом k= − a2.  При фиксированном значении a  — т.е. при фиксированном угле наклона — и при b∈ ℝ  получаем всевозможные прямые с угловым коэффициентом k= − a.
    2

PIC

Чтобы система имела ровно 4  решения, прямая должна пересекать каждую из окружностей ровно в двух точках. Это возможно в том и только том случае, когда угловой коэффициент прямой по модулю меньше, чем угловой коэффициент общей внутренней касательной двух данных окружностей (тогда за счёт выбора параметра b  можно подобрать такое положение прямой, что она пересекает каждую из окружностей дважды).

Проведём общую внутреннюю касательную AB  к окружностям (пусть A  и B  — точки касания этой прямой с Ω  и ω  соответственно). Пусть l  — прямая, параллельная AB  и проходящая через точку O;  пусть также l∩QB = H,  ∠HOQ  = φ  (OH ∥AB,  поэтому φ  — угол наклона общей внутренней касательной). Так как

HQ = HB + BQ = OA+ BQ = 3+ 2=5,

а также OQ = 6,  то из прямоугольного △HOQ  имеем

     ∘ ---------  √--
OH =   OQ2− HQ2 =  11

Значит,

     HQ-  -5-
tgφ = OH = √11

С учётом сказанного выше подходят все значения углового коэффициента, по модулю меньшие, чем tgφ,  откуда

|| a||  -5-     (  -10- -10-)
|− 2|< √11 ⇔ a ∈ − √11;√11
Ответ:

(− √10-; 1√0)
   11  11

Рулетка
Вы можете получить скидку в рулетке!